Lab Me Logo

Dopamine Reuptake In The Pre-Frontal Cortex

Dr. Anthony Close
October 29, 2022
Dopamine

Dopamine and Glutamate signaling cascades in the prefrontal cortex (PFC) may be a potential therapeutic target for preventing the progression of drug abuse.

Most CPP studies occur during abstinence, so the learned memories during conditioning sessions would have to have been solidified and maintained for the animals to remember the association when reintroduced to the CPP chamber. On test day, the memory is recalled and destabilized, enabling the memory to be modified with new information. After this, the memory is again stabilized in a procedure known as reconsolidation Rossa & Taylor, 2013, 2016). Therefore, it is plausible that opiate-conditioning-based CPP relies on three stages of memory: Consolidate, Retrieve, and Reconsoldatedate.

The central amygdala, yet another brain area involved in learning and memory (Ciocchi, 2010; Goode & Maren, 2019), additionally impacts the acquisition of opiates CPP in this instance, via NMDAR and Dopamine-D1R activation (Zarranz et al., 2003; Resdayoff et al., 2007). In addition, inhibition of MEK and NMDAR in the central amygdala blocks opiates-based CPP (Li et al.,2011).

Humans have likewise been demonstrated to create CPP; for example, individuals who consume therapeutic amounts of amphetamines create a CPP for where he or they took the medication (Li et al., 2014).

For example, in studies testing drugs of abuse, when an experimental subject receives the substance and immediately feels its positive effects, they may experience a form of "conditioning" called "Conditioning by Contiguity." If the subject is exposed to the substance again after a certain period has passed, however, they may feel the negative side effects instead.


Peptides and NT’s Influencing Negative Associations

Neurotransmitters are small molecules that travel across synaptic gaps between neurons. Neuropeptide transmitters are larger molecules that are stored in larger vesicles. They're usually co-secreted along with other neurotransmitter substances, and their release isn't limited to the synapses.

The current review focuses on some of the major neuropeptide populations within the PFC—notably neuropeptide Y (NPY), corticotrophin-releasing factor (CRF), somatostatin (SST), dynorphin opioids (DYN), and the endorphin/enkephalin opioid systems.

Neuropeptide Y (NPY)

Neuropeptide Y Signaling and Overall Peptide Actions

Neuropeptide y (NPY) is an endogenous ligand for the Y1 and Y2 receptors. These two receptor subtypes belong to the family of G protein-coupled receptors (GPCRs) and share high-sequence homology. Both receptors are widely distributed throughout the brain and spinal cord. They mediate various biological actions, including feeding behavior, anxiety, depression, memory, learning, cardiovascular regulation, pain perception, and modulation of immune responses. In addition, they play important roles in regulating energy balance and body weight.

NPY in the CNS on alcohol consumption indicates that a lack of NPY can promote alcohol consumption.

Moreover, other drugs of abuse, such as cocaine, lead to reductions in NPY in the PFC (Wahlestedt et al., 1991). These findings indicate that NPY and its receptors play an important role in alcohol consumption; NPY and its corresponding receptors in the PFC are hypothesized to regulate behaviors associated with substance use disorder in humans. In animal models, NPY is downregulated by multiple forms of substance use (both binge alcohol and cocaine).

NPY in the PFC is region-specific even within the PFC, and its effect may depend largely on the injection site. The pre-clinical work supports the hypothesis that NPY plays a role in regulating a specific subset of behaviors associated with depression.

Male rats treated with Lithium exhibited increased NPY-like immunoreactivity in the frontal cortex, suggesting that NPY may be involved in response to lithium medications.

Dopamine
Dopamine Reuptake In The Pre-Frontal Cortex 3

Corticotropin-Releasing Factor (CRF)


CRF Neuropeptide Signaling and Overall Actions

Corticotropin-releas­ing hormone (CRF) is a 41 amino acid peptide that stimulates the secretion of ACTH from the pituitary gland. It is produced mainly in the hypothalamus, amygdala, hippocampus, thalamus, and brainstem.

Substance Use Disorders

Somatostatin (SST)

This suggests that decreased binge-like ethanol drinking resulting from inhibition of CRF-R1 may result from increased activation of the CRF-R2, providing strong evidence in support of the important role of both CRF-R1 and CRF-R2 in the PFC in regulating substance abuse. However, in separate work, blocking CRF-R2 in the PFC partially inhibited cocaine-primed reinstatement of cocaine-conditioned place preference.


SST Neuropeptide Signaling and Overall Actions

SOM, also called somatotropin-releasing inhibiting factor (SRIF) has been identified for decades as a hypothalamic extract that inhibits the release of growth hormones from the rat anterior pituitary in vitro. Somatostatin was originally described as a 14 (SST-14) amino acid peptide (Brazeau et al., 1973).

SST exhibits diverse physiological effects, such as regulation of visceral functions and inhibition of a variety of biological processes, including anterior pituitary hormone secretion, insulin secretion, glucagon secretion, immune responses, DNA synthesis, and cell division (Brown and Taché, 1981; Kumar and Grant, 2010; Eigler and Ben-Shlomo, 2014; Morisset, 2017).

In short, somatostatin inhibits various cellular processes, such as the secretion of hormones and other secretory proteins (Benali et al., 2000; Morisset, 2017). Somatostatin has been gaining attention for its role in the CNS as a neuromodulator and in regulating behaviors linked to stress, including substance abuse and affective disorders (Liguz-Lecznar et al., 2016; Robinson and Thiele, 2020).

Cortical neurons' response to SST depends on concentration and corresponding receptor activation (Delfs and Dichter, 1983). Delfs and Dichter (1983) found that in cultured rat cortical neurons, low concentrations of SST-14 (100 pM–1 μM) caused an excitatory response and depolarization in neurons, while at higher concentrations (10 μM–1 mM), SST-14 was more likely to have no effect or to produce an inhibitory response.

Schizophrenia

These studies support the hypothesis that BDNF underlies changes in SST in the PFC and may precede changes in SST.

Consistent with this hypothesis, strong positive correlations between BDNF protein levels and SST mRNA levels were observed in the PFC of human subjects (post-mortem tissue) with schizophrenia, suggesting that BDNF may function to regulate SST expression in the PFC.

Note: Improve BDNF using cerebrolysin/NASA followed by SST.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701766/ (Cerebrolysin & BDNF)

Protocol study: Cerebrolysin (10 mL, 5 days/week during 4 weeks) was administered alone or associated with Donepezil (5 mg/die during 28 weeks). Brain-Derived Neurotrophic Factor (BDNF) serum levels were evaluated before treatment and at the end of each period. Cognitive functions were assessed at baseline and every four weeks.

Patients treated with Cerebrolysin showed increased serum BDNF levels compared to the placebo group. Moreover, the association of Cerebrolysin with Donepezil induced a further increment in BDNF levels. In addition, we found a positive correlation between BDNF and Free Insulin Growth Factor I (IGF-1) levels.

These data confirm the neuroprotective role of Cerebrolysin and the synergism between Cerebrolysin and Donepezil. Furthermore, our findings show that the improvement of cognitive function observed in patients treated with both drugs lasted until week 28. In contrast, patients treated with monotherapies lost part of their cognitive gains after 16 weeks.

Dynorphin

Dynorphin Signaling and Overall Peptide Actions

Dynorphin, an endogenous member of the opioid neuropeptide family (Goldstein et al., 1979), is thought to mediate negative emotional states associated with stress, depression, and drug use withdrawal.


Consistent with the human literature, pre-clinical animal studies also indicate altered dynorphin/KOR following the administration of substances of abuse other than alcohol. Acute (8 mg/kg, intraperitoneal) administration of 3,4-methylenedioxy-N-methylamphetamine (ecstasy) in male Sprague–Dawley rats raised levels of prodynorphin mRNA in the PFC and decreased levels of Dynorphin-A.


Note: MDMA can reduce Dynorphin-A

TAT-DATING

Sequence: TAT-DATNT (YGRKKRRQRRRMSKSKCSVGLMSSVV) was commercially obtained from GenScript USA Inc

Animals were then given an intracranial injection of 40 nmol TAT or TAT-DATNT,

Our results suggest that disrupting the D2R-DA transporter interaction may effectively treat ADHD.

https://molecularbrain.biomedcentral.com/articles/10.1186/s13041-018-0409-0


Oxytocin

Oxytocin administration regulated GABA cell signaling in this region [62]. The administration of oxytocin into the prelimbic cortex reduced anxiety and was associated with increased activation of GABA cells [63]. In addition, intracerebroventricular (icv) administration of oxytocin enhanced the level of GABA in the PFC, and significantly reduced methamphetamine-induced increases in glutamate and glutamate NMDAR1 expression in this brain region [64], [65], [66].

A study found that in cocaine-experienced rats, a reduction in drug-seeking behavior by oxytocin administration was also associated with recovery in glutamatergic neurotransmission in the prefrontal cortex (PFC). A recent mouse experiment found that intranasal application of oxytocin could reverse the cognitive deficits caused by long-term exposure to methamphetamines.

Given the recent findings showing reduced cell activity in the prelim­bic cortex in acutely methamphet­amine-exposed rats [54], we hypothesized that the direct administration of vasopressin into the prelimb­ic cortex would significantly decrease methamphet­amine self-administration behavior. MDMA increases levels of oxytocin, which has both prosocial and anxioleptic effects.

These effects are mediated by the V1a receptor. V1a receptors, on the other hands, are involved in mediating

 the stress response. V1b receptors (also known as vasopressin 1B receptors) are found in the anterior pituitaries, amygdalas, hippocampi, and paraventricular nuclei of rats, and mice, Vasopressin released by the paraventricular nucleus of the hypothalamus stimulates the secretion of ACTH from the anterior pituitary gland.

Oxytocin has also been shown to increase the secretion of adrenocorticotropic hormone (ACTH) from the anterior pituitary gland [87] and vasopressins levels are decreased in opiate dependent patients [88], during withdrawal from alcohol [89], and a decrease in immunoreactive-vasopressins-has been measured in post mortem alcohol addicts [90]. The effects of drug abuse on the vasopressinsystem appear to change across the stages of addiction and abstinence.

Likewise, rats that showed a preference for methamphetamine in a self-administration protocol (high takers) had increased OXR1 compared to low takers and saline controls when measured after 30 days of abstinence, however, this was not present in females [148]. There was a strong positive correlation between OXR1 mRNA expression and cue-induced lever presses after abstinence in male rats [148], while OXR2 expression was negatively correlated with lever pressing, in both male and female rats [148,149]. Similarly, in a binge drinking a protocol, mice classed as high drinkers showed greater OX1R receptor expression in the PFC than low drinkers [150].

Furthermore, astrocytes are greatly involved in synaptic transmission and plasticity, and importantly determine GABA and glutamate homeostasis, a key regulator of pyramidal cell function in driving relapse behaviour [173,174]. Recent research determined that GABA interneurons have an intimate relationship with regulating astrocytes in the co-ordination of executive function [175 and that astrocytes may be regulated by peptides, such as oxytocin [176], vasopressin (V1a receptors)[177], CRF [178] or orexin [179]. Together, these data highlight important avenues for therapeutic interactions and future treatment discoveries for SUD.

https://www.sciencedirect.com/science/article/pii/S277239252200013X

Glutamate and GABA Homeostasis and Neurometabolism in Major Depressive Disorder

Glutamate and γ-aminobutyric acid (GABA) are the major excitatory and inhibitory neurotransmitters, respectively, in the matured central nervous system. Imbalance in the levels of these neurotransmitters has been implicated in different neurological and psychiatric disorders including MDD.

Certain environmental factors such as prematernal stress, childhood abuse, physical and sexual abuse, continuous failures, substance abuse, sadness, and severe trauma increase the risk of depression (6, 7). Depression has been often seen to be associated with various neurodegenerative disorders (8) such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and systemic diseases like diabetes (9) and cancer (10).

Box 1. Symptoms of MDD: as per the diagnostic and statistical manual of mental disorder (DSM-V) at least five of the following symptoms must be present during entire 2-week period (5).

➢ Consistently feeling sad, empty, and hopeless

➢ Markedly diminished interest in pleasurable activities

➢ Significant weight loss or weight gain

➢ Increased or decreased appetite

➢ Insomnia or hypersomnia

➢ Fatigue or loss of energy

➢ Feeling of worthlessness, feeling excessive, or inappropriate guilt

➢ Diminished ability to think or concentrate, or indecisiveness

➢ Recurrent thoughts of death and suicidal ideation without a specific plan

➢ Psychomotor agitation or retardation

A new study found that IV ketamine treatment may help people who suffer from depression by increasing brain activity in an important part of the brain called the mPFC. GABA/water and glutamate/water levels increased significantly after ketamine infusion.

However, most of the studies reported no significant change in GABA and glutamate levels after ketamine administration. As mentioned above, ketamine may exert its antidepressant effect by impacting neurotransmitter cycling, oxidative metabolism, and neuronal–glial interactions.

We've found that a low-dosage injection of ketamine increases the levels of brain metabolites derived from both glucose and acetate. These findings suggest that ketamine may be able to normalize the metabolic activity of glutamate and gamma-aminobutyric acid (GABA) receptors in depressed patients. Furthermore, recent research has shown that ketamine increases the rate of glutamatergic neurotransmission without affecting mitochondrial respiration in neurons (182).

Scientists at the University of California San Francisco (UCSF) have created an experimental drug that could help prevent seizures following head injuries, strokes, and even Alzheimer’s disease. A single peptide calledbidentatee has been isolated and purified from the plant Achyranthes bBidensBlume. Bidentatides' amino acids sequence and disulfide bond connectivity was determined by Edman degradation and mass spectrometry.

We evaluated the neuroactive properties of bidentate by observing its effects on NMDAR-mediated neurotoxicity in vitro and discovered that preincubating cells with bibidentaterotected them against NMDA-mediated toxicity through several mechanisms including inhibition of calcium influx, reduction of NMDA currents, and up-regulating antiapoptotic proteins.

All of the above methods were dependent on the inhibitory modulation of NMDARsbidentatetide (BIM). Overall, this study could help develop promising new drugs for treating neurological diseases and promote the modernization of traditional Chinese medicines. Furthermore, an in-depth knowledge of the structural characteristics identitiesses would be helpful for the development of synthetic peptide-based drugs with neurotrophic/neuroprotective properties.

file:///Users/labme/Library/Mobile%20Documents/com~apple~CloudDocs/DripDok/Photos/journal.pone.0254493.pdf

https://www.frontiersin.org/articles/10.3389/fpsyt.2021.637863/full

 
  
References
https://www.frontiersin.org/articles/10.3389/fnbeh.2020.588400/full#B168

Adrian, T. E., Allen, J. M., Bloom, S. R., Ghatei, M. A., Rossor, M. N., Roberts, G. W., et al. (1983). Neuropeptide Y distribution in human brain. Nature 306, 584–586. DOI: 10.1038/306584a0

PubMed Abstract | CrossRef Full Text | Google Scholar

Al-Hasani, R., McCall, J. G., Shin, G., Gomez, A. M., Schmitz, G. P., Bernardi, J. M., et al. (2015). Distinct subpopulations of nucleus accumbens dynorphin neurons drive aversion and reward. Neuron 87, 1063–1077. doi: 10.1016/j.neuron.2015.08.019

PubMed Abstract | CrossRef Full Text | Google Scholar

Al-Hasani, R., Wong, J. M. T., Mabrouk, O. S., McCall, J. G., Schmitz, G. P., Porter-Stransky, K. A., et al. (2018). in vivo detection of optically-evoked opioid peptide release. Elife 7:e36520. doi: 10.7554/elife.36520

PubMed Abstract | CrossRef Full Text | Google Scholar

Allen, Y. S., Adrian, T. E., Allen, J. M., Tatemoto, K., Crow, T. J., Bloom, S. R., et al. (1983). Neuropeptide Y distribution in the rat brain. Science 221, 877–879. DOI: 10.1126/science.6136091

PubMed Abstract | CrossRef Full Text | Google Scholar

American Psychological Association (APA). (2013). Diagnostic and Statistical Manual of Mental Disorders: Depressive Disorders, Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: American Psychiatric Publishing, Inc.

Arnsten, A. F. T. (2009). Stress signaling pathways impair prefrontal cortex structure and function. Nat. Rev. Neurosci. 10, 410–422. doi: DOI1038/nrn2648

PubMed Abstract | CrossRef Full Text | Google Scholar

Ault, D. T., and Werling, L. L. (1998). Neuropeptide Y-mediated enhancement of NMDA-stimulated [3H]dopamine release from rat prefrontal cortex is reversed by σ1 receptor antagonists. Schizophr. Res. 31, 27–36. DOI: 10.1016/s0920-9964(98)00002-4

PubMed Abstract | CrossRef Full Text | Google Scholar

Baldo, B. A. (2016). Prefrontal cortical opioids and dysregulated motivation: a network hypothesis. Trends Neurosci. 39, 366–377. DOI: 10.1016/j.tins.2016.03.004

PubMed Abstract | CrossRef Full Text | Google Scholar

Bale, T. L., Abel, T., Akil, H., Carlezon, W. A., Moghaddam, B., Nestler, E. J., et al. (2019). The critical importance of basic animal research for neuropsychiatric disorders. Neuropsychopharmacology 44, 1349–1353. DOI: 10.1038/s41386-019-0405-9

PubMed Abstract | CrossRef Full Text | Google Scholar

Bale, T. L., and Vale, W. W. (2004). CRF and CRF receptors: role in stress responsivity and other behaviors. Annu. Rev. Pharmacol. Toxicol. 44, 525–557. DOI: 10.1146/annual.pharmtox.44.101802.121410

PubMed Abstract | CrossRef Full Text | Google Scholar

Bals-Kubik, R., Ableitner, A., Herz, A., and Shippenberg, T. S. (1993). Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. J. Pharmacol. Exp. Ther. 264, 489–495.

PubMed Abstract | Google Scholar

Banasr, M., Lepack, A., Fee, C., Duric, V., Maldonado-Aviles, J., DiLeone, R., et al. (2017). Characterization of GABAergic marker expression in the chronic unpredictable stress model of depression. Chronic Stress 1:247054701772045. DOI: 10.1177/2470547017720459

PubMed Abstract | CrossRef Full Text | Google Scholar

Bazov, I., Kononenko, O., Watanabe, H., Kuntiä, V., Sarkisyan, D., Taqi, M. M., et al. (2013). The endogenous opioid system in human alcoholics: molecular adaptations in brain areas involved in cognitive control of addiction. Addict. Biol. 18, 161–169. doi: 10.1111/j.1369-1600.2011.00366.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Bazov, I., Sarkisyan, D., Kononenko, O., Watanabe, H., Karpyak, V. M., Yakovleva, T., et al. (2018). Downregulation of the neuronal opioid gene expression concomitantly with a neuronal decline thethe n dorsolateral prefrontal cortex of human alcoholics. Transl. Psychiatry 8DOI2. doi: 10.1038/s41398-017-0075-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Benali, N., Ferjoux, G., Puente, E., Buscail, L., and Susini, C. (2000). Somatostatin receptors. Digestion 62, 27–32. DOI: 10.1159/000051852

CrossRef Full Text | Google Scholar

Beneyto, M., Morris, H. M., Rovensky, K. C., and Lewis, D. A. (2012). Lamina- and cell-specific alterations in cortical somatostatin receptor 2 mRNA expression in schizophrenia. Neuropharmacology 62, 1598–1605. doi: 10.1016/j.neuropharm.2010.12.029

PubMed Abstract | CrossRef Full Text | Google Scholar

Benoit, R., Esch, F., Bennett, H. P. J., Ling, N., Ravazzola, M., Orci, L., et al. (1990). Processing of prosomatostatin. Metabolism 39, 22–25. doi: 10.1016/0026-0495(90)90202-n

PubMed Abstract | CrossRef Full Text | Google Scholar

Berglund, M. M., Hipskind, P. A., and Gehlert, D. R. (2003). Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes. Exp. Biol. Med. 228, 217–244. DOI: dopamine rush10.1177/153537020322800301

PubMed Abstract | CrossRef Full Text | Google Scholar

Blasio, A., Steardo, L., Sabino, V., and Cottone, P. (2014). The opioid system in the medial prefrontal cortex mediates binge-like eating. Addict. Biol. 19, 652–662. doi: 10.1ADB/adb.12033

PubMed Abstract | CrossRef Full Text | Google Scholar - dopamine molecule - effect of dopamine - boosting dopamine

Bloodgood, D. W., Sugam, J. A., Holmes, A., and Kash, T. L. (2018). Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Transl. Psychiatry 8:60. doi: 10.1038/s41398-018-0106-x

PubMed Abstract | CrossRef Full Text | Google Scholar

Bogart, L. J., and O’Donnell, P. (2018). Multiple long-range inputs evoke NMDA currents in prefrontal cortex fast-spiking interneurons. Neuropsychopharmacology 43, 2101–2108. doi: 10.1038/s41386-018-0029-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Boutros, N., Der-Avakian, A., Semenova, S., Lee, S., and Markou, A. (2016). Risky choice and brain CRF after adolescent ethanol vapor exposure and social stress in adulthood. Behav. Brain Res. 311, 160–166. doi: 10.1016/j.bbr.2016.05.038

PubMed Abstract | CrossRef Full Text | Google Scholar

Brazeau, P., Vale, W., Burgus, R., Ling, N., Butcher, M., Rivier, J., et al. (1973). A hypothalamic polypeptide inhibits the secretion of immunoreactive pituitary growth hormone. Science 179, 77–79. doiDOI0.1126/science.179.4068.77

PubMed Abstract | CrossRef Full Text | Google Scholar

Britt, J. P., Benaliouad, F., McDevitt, R. A., Stuber, G. D., Wise, R. A., and Bonci, A. (2012). Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76, 790–803. doi: 10.1016/j.neuron.2012.09.040

PubMed Abstract | CrossRef Full Text | Google Scholar

Brown, M., and Taché, Y. (1981). Hypothalamic peptides: central nervous system control of visceral functions. Fed. Proc. 40, 2565–2569.

PubMed Abstract | Google Scholar

Bruchas, M. R., Land, B. B., and Chavkin, C. (2010). The dynorphin/kappa opioid system is a modulator of stress-induced and pro-addictive behaviors. Brain Res. 1314, 44–55. DOI: 10.1016/j.brainres.2009.08.062

PubMed Abstract | CrossRef Full Text | Google Scholar

Bruchas, M. R., Macey, T. A., Lowe, J. D., and Chavkin, C. (2006). Kappa opioid receptor activation of p38 MAPK is GRK3- and arrestin-dependent in neurons and astrocytes. J. Biol. Chem. 281, 18081–18089. DOI: 10.1074/jbc.m513640200

PubMed Abstract | CrossRef Full Text | Google Scholar

Bruijnzeel, A. W. (2009). kappa-Opioid receptor signaling and brain reward function. Brain Res. Rev. 62, 127–146. doi: 10.1016/j.brainresrev.2009.09.008

PubMed Abstract | CrossRef Full Text | Google Scholar

Caberlotto, L., and Hurd, Y. L. (1999). Reduced neuropeptide Y mRNA expression in the prefrontal cortex of subjects with bipolar disorder. Neuroreport 10, 1747–1750. doi: 10.1097/00001756-199906030-00022

PubMed Abstract | CrossRef Full Text | Google Scholar

Caberlotto, L., and Hurd, Y. L. (2001). Neuropeptide Y Y1 and Y2 receptor mRNA expression in the prefrontal cortex of psychiatric subjects: relationship of Y2 subtype to suicidal behavior. Neuropsychopharmacology 25, 91–97. doi: 10.1016/s0893-133x(00)00231-1

PubMed Abstract | CrossRef Full Text | Google Scholar

Capogna, M., Gähwiler, B. H., and Thompson, S. M. (1993). Mechanism of mu-opioid receptor-mediated presynaptic inhibition in the rat hippocampus in vitro. J. Physiol. 470, 539–558. doi: 10.1113/jphysiol.1993.sp019874

PubMed Abstract | CrossRef Full Text | Google Scholar

Carboni, L., Romoli, B., Bate, S. T., Romualdi, P., and Zoli, M. (2018). Increased expression of CRF and CRF-receptors in the dorsal striatum, hippos,mpus and prefrontal cortex after the development of nicotine sensitization in rats. Drug Alcohol Depend. 189, 12–20. doi: 10.1016/j.drugalcdep.2018.04.027

PubMed Abstract | CrossRef Full Text | Google Scholar

Carboni, L., Romoli, B., Romualdi, P., and Zoli, M. (2016). Repeated nicotine exposure modulates prodynorphin and pronociceptin levels in the reward pathway. Drug Alcohol Depend. 166, 150–158. doi: 10.1016/j.drugalcdep.2016.07.002

PubMed Abstract | CrossRef Full Text | Google Scholar

Carlén, M. (2017). What constitutes the prefrontal cortex? Science 358, 478–482. doi: 10.1126/science.aan8868

PubMed Abstract | CrossRef Full Text | Google Scholar

Cénat, J. M., McIntee, S. E., and Blais-Rochette, C. (2020). Symptoms of posttraumatic stress disorder, depression, anxiety and other mental health problems following the 2010 earthquake in Haiti: a systematic review and meta-analysis. J. Affect. Disord. 273, 55–85. doi: 10.1016/j.jad.2020.04.046

PubMed Abstract | CrossRef Full Text | Google Scholar

Chang, G. Q., Barson, J. R., Karatayev, O., Chang, S. Y., Chen, Y. W., and Leibowitz, S. F. (2010). Effect of chronic ethanol on enkephalin in the hypothalamus and extra-hypothalamic areas. Alcohol. Clin. Exp. Res. 34, 761–770. doi: 10.1111/j.1530-0277.2010.01148.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Chan-Palay, V., Allen, Y. S., Lang, W., Haesler, U., and Polak, J. M. (1985). I. Cytology and distribution in the normal human cerebral cortex of neurons immunoreactive with antisera against neuropeptide Y. J. Comp. Neurol. 238, 382–389. doi: 10.1one/cne.902380403

PubMed Abstract | CrossRef Full Text | Google Scholar

Chavkin, C., James, I. F., and Goldstein, A. (1982). Dynorphin is a specific endogenous ligand of the κ opioid receptor. Science 215, 413–415. doi: 10.1016/0304-3959(82)90120-8

PubMed Abstract | CrossRef Full Text | Google Scholar

Chefer, V., Thompson, A. C., and Shippenberg, T. S. (1999). Modulation of cocaine-induced sensitization by κ-opioid receptor agonists. Role of the nucleus accumbens and medial prefrontal cortex. Ann. N Y Acad. Sci. 877, 803–806. doi: 10.1111/j.1749-6632.1999.tb09327.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Chen, P., Lou, S., Huang, Z.-H., Wang, Z., Shan, Q.-H., Wang, Y., et al. (2020). Prefrontal cortex corticotropin-releasing factor neurons control behavioral style selection under challenging situations. Neuron 106, 301.e7–315.e7. doi: 10.1016/j.neuron.2020.01.033

PubMed Abstract | CrossRef Full Text | Google Scholar

Chen, J. X., Tang, Y. T., and Yang, J. X. (2008). Changes of glucocorticoid receptor and levels of CRF mRNA, POMC mRNA in the brain of chronic immobilization stress rats. Cell. Mol. Neurobiol. 28, 237–244. doi: 10.1007/s10571-007-9170-0

PubMed Abstract | CrossRef Full Text | Google Scholar

Cohen, H., Liu, T., Kozlovsky, N., Kaplan, Z., Zohar, J., and Mathé, A. A. (2012). The neuropeptide y (NPY)-ergic system is associated with behavioral resilience to stress exposure in an animal model of post-traumatic stress disorder. Neuropsychopharmacology 37, 350–363. doi: 10.1038/NPP.2011.230

PubMed Abstract | CrossRef Full Text | Google Scholar

Commons, K. G., Chelonians, A. B., Babb, J. A., and Ehlinger, D. G. (2017). The rodent-forced swim test measures stress-coping strategy, not depression-like behavior. ACS Chem. Neurosci. 8, 955–960. doi: 10.1021/acschemneuro.7b00042

PubMed Abstract | CrossRef Full Text | Google Scholar

Corder, G., Castro, D. C., Bruchas, M. R., and Scherrer, G. (2018). Endogenous and exogenous opioids in pain. Annu. Rev. Neurosci. 41, 453–473. doi: 10.1146/annurev-neuro-080317-061522

PubMed Abstract | CrossRef Full Text | Google Scholar

Crowley, N. A., Bloodgood, D. W., Hardaway, J. A., Kendra, A. M., McCall, J. G., Al-Hasani, R., et al. (2016). Dynorphin controls the gain of an amygdala anxiety circuit. Cell Rep. 14, 2774–2783. doi: 10.1016/j.celrep.2016.02.069

PubMed Abstract | CrossRef Full Text | Google Scholar

Crowley, N. A., and Kash, T. L. (2015). Kappa opioid receptor signaling in the brain: circuitry and implications for treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 62, 51–60. doi: 10.1016/j.pnpbp.2015.01.001

PubMed Abstract | CrossRef Full Text | Google Scholar

Cummings, K. A., and Clem, R. L. (2020). Prefrontal somatostatin interneurons encode fear memory. Nat. Neurosci. 23, 61–74. doi: 10.1038/s41593-019-0552-7

PubMed Abstract | CrossRef Full Text | Google Scholar

Czéh, B., Vardya, I., Varga, Z., Febbraro, F., Csabai, D., Martis, L. S., et al. (2018). Long-term stress disrupts the structural and functional integrity of GABAergic neuronal networks in the medial prefrontal cortex of rats. Front. Cell. Neurosci. 12:148. doi: 10.3389/fncel.2018.00148

PubMed Abstract | CrossRef Full Text | Google Scholar

D’Addario, C., Caputi, F. F., Rimondini, R., Gandolfi, O., Del Borrello, E., Candeletti, S., et al. (2013). Different alcohol exposures induce selective alterations in the expression of dynorphin and nociceptin systems-related genes in rat brains. Addict. Biol. 18, 425–433. doi: 10.1111/j.1369-1600.2011.00326.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Dao, N. C., Brockway, D. F., and Crowley, N. A. (2019). in vitro optogenetic characterization of neuropeptide release from prefrontal cortical somatostatin neurons. Neuroscience 419, 1–4. doi: 10.1016/j.neuroscience.2019.08.014

PubMed Abstract | CrossRef Full Text | Google Scholar

Dautzenberg, F. M., and Hauger, R. L. (2002). The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol. Sci. 23, 71–77. doi: 10.1016/s0165-6147(02)01946-6

PubMed Abstract | CrossRef Full Text | Google Scholar

Dawbarn, D., Zamir, N., Waters, C. M., Hunt, S. P., Emson, P. C., and Brownstein, M. J. (1986). Peptides derived from prodynorphin are decreased in basal ganglia of Huntington’s disease brains. Brain Res. 372, 155–158. doi: 10.1016/0006-8993(86)91469-1

PubMed Abstract | CrossRef Full Text | Google Scholar

de Souza, E. B., Insel, T. R., Perrin, M. H., Rivier, J., Vale, W. W., and Kuhar, M. J. (1985). Corticotropin-releasing factor receptors are widely distributed within the rat central nervous system: an autoradiographic study. J. Neurosci. 5, 3189–3203. doi: 10.1523/jneurosci.05-12-03189.1985

PubMed Abstract | CrossRef Full Text | Google Scholar

Dedic, N., Chen, A., and Deussing, J. M. (2017). The CRF family of neuropeptides and their receptors—mediators of the central stress response. Curr. Mol. Pharmacol. 11, 4–31. doi: 10.2174/1874467210666170302104053

PubMed Abstract | CrossRef Full Text | Google Scholar

Dégenètais, E., Thierry, A. M., Glowinski, J., and Gioanni, Y. (2003). Synaptic influence of hippocampus on pyramidal cells of the rat prefrontal cortex: an in vivo intracellular recording study. Cereb. Cortex 13, 782–792. doi: 10.1093/cercor/13.7.782

PubMed Abstract | CrossRef Full Text | Google Scholar

Delfs, J. R., and Dichter, M. A. (1983). Effects of somatostatin on mammalian cortical neurons in culture: physiological actions and unusual dose-response characteristics. J. Neurosci. 3, 1176–1178. doi: 10.1523/jneurosci.03-06-01176.1983

PubMed Abstract | CrossRef Full Text | Google Scholar

Dhawan, B., Cesselin, F., Raghubir, R., Reisine, T., Bradley, P., Portoghese, P., et al. (1996). International union of pharmacology. XII. Classification of opioid receptors. Pharmacol. Rev. 48, 567–592.

PubMed Abstract | Google Scholar

Di Benedetto, M., D’Addario, C., Candeletti, S., and Romualdi, P. (2006). Chronic and acute effects of 3,4-methylenedioxy-N-methylamphetamine (‘Ecstasy’) administration on the dynorphinergic system in the rat brain. Neuroscience 137, 187–196. doi: 10.1016/j.neuroscience.2005.09.015

PubMed Abstract | CrossRef Full Text | Google Scholar

Du, X., Serena, K., Hwang, W., Grech, A. M., Wu, Y. W. C., Schroeder, A., et al. (2018). Prefrontal cortical parvalbumin and somatostatin expression and cell density increase during adolescence and are modified by BDNF and sex. Mol. Cell. Neurosci. 88, 177–188. doi: 10.1016/j.mcn.2018.02.001

PubMed Abstract | CrossRef Full Text | Google Scholar

Eaton, K., Sallee, F., and Sah, R. (2007). Relevance of neuropeptide Y (NPY) in psychiatry. Curr. Top. Med. Chem. 7, 1645–1659. doi: 10.2174/156802607782341037

PubMed Abstract | CrossRef Full Text | Google Scholar

Ehlers, C. L., Chaplin, R. I., Wall, T. L., Lumeng, L., Li, T. K., Owens, M. J., et al. (1992). Corticotropin-releasing factor (CRF): studies in alcohol preferring and non-preferring rats. Psychopharmacology 106, 359–364. doi: 10.1007/bf02245418

PubMed Abstract | CrossRef Full Text | Google Scholar

Ehlers, C. L., Li, T.-K., Lurneng, L., Hwang, B. H., Somes, C., Jimenez, P., et al. (1998). Neuropeptide Y levels in ethanol-naive alcohol-preferring and non preferring rats and inWistarr rats after ethanol exposure. Alcohol. Clin. Exp. Res. 22, 1778–1782. doi: 10.1111/j.1530-0277.1998.tb03979.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Eigler, T., and Ben-Shlomo, A. (2014). Somatostatin system: molecular mechanisms regulating anterior pituitary hormones. J. Mol. Endocrinol. 53, R1–19. doi: 10.1530/jme-14-0034

PubMed Abstract | CrossRef Full Text | Google Scholar

Faron-Górecka, A., Kuśmider, M., Solich, J., Kolasa, M., Pabian, P., Gruca, P., et al. (2018). Regulation of somatostatin receptor 2 in the context of antidepressant treatment response in chronic mild stress in rat. Psychopharmacology 235, 2137–2149. doi: 10.1007/s00213-018-4912-x

PubMed Abstract | CrossRef Full Text | Google Scholar

Fattore, L., Viganò, D., Fadda, P., Rubino, T., Fratta, W., and Parolaro, D. (2007). Bidirectional regulation of mu-opioid and CB1-cannabinoid receptor in rats self-administering heroin or WIN 55,212–2. Eur. J. Neurosci. 25, 2191–2200. doi: 10.1111/j.1460-9568.2007.05470.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Férézou, I., Hill, E. L., Cauli, B., Gibelin, N., Kaneko, T., Rossier, J., et al. (2007). Extensive overlap of mu-opioid and nicotinic sensitivity in cortical interneurons. Cereb. Cortex 17, 1948–1957. doi: 10.1093/cercor/bhl104

PubMed Abstract | CrossRef Full Text | Google Scholar

Ferguson, B. R., and Gao, W. J. (2015). Development of thalamocortical connections between the mediodorsal thalamus and the prefrontal cortex and its implication in cognition. Front. Hum. Neurosci. 8:1027. doi: 10.3389/fnhum.2014.01027

PubMed Abstract | CrossRef Full Text | Google Scholar

Fischli, W., Goldstein, A., Hunkapiller, M. W., and Hood, L. E. (1982). Isolation and amino acid sequence analysis of 4,000-dalton dynorphin from porcine pituitary. Proc. Natl. Acad. Sci. U S A 79, 5435–5437. doi: 10.1073/pnas.79.17.5435

PubMed Abstract | CrossRef Full Text | Google Scholar

Flaisher-Grinberg, S., Persaud, S. D., Loh, H. H., and Wei, L. N. (2012). Stress-induced epigenetic regulation of the κ-opioid receptor gene involves transcription factor c-Myc. Proc. Natl. Acad. Sci. U S A 109, 9167–9172. doi: 10.1073/pnas.1205565109

PubMed Abstract | CrossRef Full Text | Google Scholar

Fogaça, M. V., and Duman, R. S. (2019). Cortical GABAergic dysfunction in stress and depression: new insights for therapeutic interventions. Front. Cell. Neurosci. 13:87. doi: 10.3389/fncel.2019.00087

PubMed Abstract | CrossRef Full Text | Google Scholar

Fung, S. J., Fillman, S. G., Webster, M. J., and Shannon Weickert, C. (2014). Schizophrenia and bipolar disorder show both common and distinct changes in cortical interneuron markers. Schizophr. Res. 155, 26–30. doi: 10.1016/j.schres.2014.02.021

PubMed Abstract | CrossRef Full Text | Google Scholar

Funk, C. K., and Koob, G. F. (2007). A CRF2 agonist administered into the central nucleus of the amygdala decreases ethanol self-administration in ethanol-dependent rats. Brain Res. 1155, 172–178. doi: 10.1016/j.brainres.2007.04.009

PubMed Abstract | CrossRef Full Text | Google Scholar

Fuster, J. M. (2001). The prefrontal cortex - an update: time is of the essence. Neuron 30, 319–333. doi: 10.1016/s0896-6273(01)00285-9

PubMed Abstract | CrossRef Full Text | Google Scholar

Fuxe, K., Agnati, L. F., Hafstrand, A., Zini, I., Tatemoto, K., Pich, E. M., et al. (1983). Central administration of neuropeptide Y induces hypotension bradypnea and EEG synchronization in the rat. Acta Physiol. Scand. 118, 189–192. doi: 10.1111/j.1748-1716.1983.tb07261.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Gabriel, S. M., Davidson, M., Haroutunian, V., Powchik, P., Bierer, L. M., Purohit, D. P., et al. (1996). Neuropeptide deficits in schizophrenia vs. Alzheimer’s disease cerebral cortex. Biol. Psychiatry 39, 82–91. doi: 10.1016/0006-3223(95)00066-6

PubMed Abstract | CrossRef Full Text | Google Scholar

Gatta, E., Grayson, D. R., Auta, J., Saudagar, V., Dong, E., Chen, Y., et al. (2019). Genome-wide methylation in alcohol use disorder subjects: implications for epigenetic regulation of the cortico-limbic glucocorticoid receptors (NR3C1). Mol. Psychiatry doiDOI0.1038/s41380-019-0449-6 [Epub ahead of print].

PubMed Abstract | CrossRef Full Text | Google Scholar

George, O., Sanders, C., Freiling, J., Grigoryan, E., Vu, S., Allen, C. D., et al. (2012). Recruitment of medial prefrontal cortex neurons during alcohol withdrawal predicts cognitive impairment and excessive alcohol drinking. Proc. Natl. Acad. Sci. U S A 109, 18156–18161. doi: 10.1073/pnas.1116523109

PubMed Abstract | CrossRef Full Text | Google Scholar

Gheorvassaki, E. G., Thermos, K., Liapakis, G., and Spyraki, C. (1992). Effects of acute and chronic desipramine treatment on somatostatin receptors in the brain. Psychopharmacology 108, 363–366. doi: 10.1007/bf02245124

PubMed Abstract | CrossRef Full Text | Google Scholar

Ghosal, S., Duman, C. H., Liu, R. J., Wu, M., Terwilliger, R., Girgenti, M. J., et al. (2020). Ketamine rapidly reverses stress-induced impairments in GABAergic transmission in the prefrontal cortex in male rodents. Neurobiol. Dis. 134:104669. doi: 10.1016/j.nbd.2019.104669

PubMed Abstract | CrossRef Full Text | Google Scholar

Gilpin, N. W., Misra, K., Herman, M. A., Cruz, M. T., Koob, G. F., and Roberto, M. (2011). Neuropeptide y opposes alcohol effects on gamma-aminobutyric acid release in the amygdala and blocks the transition to alcohol dependence. Biol. Psychiatry 69, 1091–1099. doi: 10.1016/j.biopsych.2011.02.004

PubMed Abstract | CrossRef Full Text | Google Scholar

Girgenti, M. J., Wohleb, E. S., Mehta, S., Ghosal, S., Fogaca, M. V., and Duman, R. S. (2019). Prefrontal cortex interneurons display dynamic sex-specific stress-induced transcriptomes. Transl. Psychiatry 9:292. doi: 10.1038/s41398-019-0642-z

PubMed Abstract | CrossRef Full Text | Google Scholar

Glaser, Y. G., Zubieta, J. K., Hsu, D. T., Villafuerte, S., Mickey, B. J., Trucco, E. M., et al. (2014). The indirect effect of corticotropin-releasing hormone receptor 1 gene variation on negative emotionality and alcohol use via right ventrolateral prefrontal cortex. J. Neurosci. 34, 4099–4107. doi: 10.1523/jneurosci.3672-13.2014

PubMed Abstract | CrossRef Full Text | Google Scholar

Glorioso, C., Sabatini, M., Unger, T., Hashimoto, T., Monteggia, L. M., Lewis, D. A., et al. (2006). Specificity and timing of neocortical transcriptome changes in response to BDNF gene ablation during embryogenesis or adulthood. Mol. Psychiatry 11, 633–648. doi: 10.1038/sj.mp.4001835

PubMed Abstract | CrossRef Full Text | Google Scholar

Goldstein, A., Tachibana, S., Lowney, L. I., Hunkapiller, M., and Hood, L. (1979). Dynorphin-(1–13), is an extraordinarily potent opioid peptide. Proc. Natl. Acad. Sci. U S A 76, 6666–6670. doi: 10.1073/pnas.76.12.6666

PubMed Abstract | CrossRef Full Text | Google Scholar

Goldstein, R. Z., and Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 12, 652–669. doi: 10.1038/nrn3119

PubMed Abstract | CrossRef Full Text | Google Scholar

Gondré-Lewis, M. C., Warnock, K. T., Wang, H., June, H. L., Bell, K. A., Rabe, H., et al. (2016). Early life stress is a risk factor for excessive alcohol drinking and impulsivity in adults and is mediated via a CRF/GABAA mechanism. Stress 19, 235–247. doi: 10.3109/10253890.2016.1160280

PubMed Abstract | CrossRef Full Text | Google Scholar

Grammatopoulos, D. K., Randeva, H. S., Levine, M. A., Kanellopoulou, K. A., and Hillhouse, E. W. (2001). Rat cerebral cortex corticotropin-releasing hormone receptors: evidence for receptor coupling to multiple G-proteins. J. Neurochem. 76, 509–519. doi: 10.1046/j.1471-4159.2001.00067.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Grossmann, T. (2013). The role of the medial prefrontal cortex in early social cognition. Front. Hum. Neurosci. 7:340. doi: 10.3389/fnhum.2013.00340

PubMed Abstract | CrossRef Full Text | Google Scholar

Guan, X., Wan, R., Zhu, C., and Li, S. (2014). Corticotropin-releasing factor receptor type-2 is involved in the cocaine-primed reinstatement of cocaine-conditioned place preference in rats. Behav. Brain Res. 258, 90–96. doi: 10.1016/j.bbr.2013.10.019

PubMed Abstract | CrossRef Full Text | Google Scholar

Gudehithlu, K. P., Duchemin, A. M., Tejwani, G. A., Neff, N. H., and Hadjiconstantinou, M. (2012). Nicotine-induced changes of brain β-endorphin. Neuropeptides 46, 125–131. doi: 10.1016/j.npep.2012.03.001

PubMed Abstract | CrossRef Full Text | Google Scholar

Hadjidakis, D. J., Raptis, S. A., Souvatzoglou, A., Karaiskos, C., Diamantopoulos, E. J., and Moulopoulos, S. D. (1986). Differences between somatostatin-28 and somatostatin-14 concerning their biological effects in healthy humans and acromegalics. Clin. Physiol. Biochem. 4, 372–383.

PubMed Abstract | Google Scholar

Hang, A., Wang, Y. J., He, L., and Liu, J. G. (2015). The role of the dynorphin/κ opioid receptor system in anxiety. Acta Pharmacol. Sin. 36, 783–790. doi: 10.1038/apps.2015.32

PubMed Abstract | CrossRef Full Text | Google Scholar

Hashimoto, T., Arion, D., Unger, T., Maldonado-Avilés, J. G., Morris, H. M., Volk, D. W., et al. (2008a). Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol. Psychiatry 13, 147–161. doi: 10.1038/sj.mp.4002011

PubMed Abstract | CrossRef Full Text | Google Scholar

Hashimoto, T., Bazmi, H., Mirnics, K., Wu, Q., Sampson, A. R., and Lewis, D. A. (2008b). Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. Am. J. Psychiatry 165, 479–489. doi: 10.1176/app.aup2007.07081223

PubMed Abstract | CrossRef Full Text | Google Scholar

Hauger, R. L., Grigoriadis, D. E., Dallman, M. F., Plotsky, P. M., Vale, W. W., and Dautzenberg, F. M. (2003). International Union of Pharmacology. XXXVI. Current status of the nomenclature for receptors for corticotropin-releasing factor and their ligands. Pharmacol. Rev. 55, 21–26. doi: 10.1124/pr.55.1.3

PubMed Abstract | CrossRef Full Text | Google Scholar

Hauser, K. F., Aldrich, J. V., Anderson, K. J., Bakalkin, G., Christie, M. J., Hall, E. D., et al. (2005). Pathobiology of dynorphins in trauma and disease. Front. Biosci. 10, 216–235. doi: 10.2741/1522

PubMed Abstract | CrossRef Full Text | Google Scholar

Hayashi, M., and Oshima, K. (1986). Neuropeptides in the cerebral cortex of macaque monkey (Macaca fuscata fuscata): regional distribution and ontogeny. Brain Res. 364, 360–368. doi: 10.1016/0006-8993(86)90848-6

PubMed Abstract | CrossRef Full Text | Google Scholar

Hayashi, M., Yamashita, A., and Shimizu, K. (1997). Somatostatin and brain-derived neurotrophic factor mRNA expression in the primate brain: decreased levels of mRNAs during aging. Brain Res. 749, 283–289. doi: 10.1016/s0006-8993(96)01317-0

PubMed Abstract | CrossRef Full Text | Google Scholar

Heilig, M. (2004). The NPY system in stress, anxiety and depression. Neuropeptides 38, 213–224. doi: 10.1016/j.npep.2004.05.002

PubMed Abstract | CrossRef Full Text | Google Scholar

Hendry, S., Jones, E., DeFelipe, J., Schmechel, D., Brandon, C., and Emson, P. (1984). Neuropeptide-containing neurons of the cerebral cortex are also GABAergic. Proc. Natl. Acad. Sci. U S A 81, 6526–6530. doi: 10.1073/pnas.81.20.6526

PubMed Abstract | CrossRef Full Text | Google Scholar

Henry, D. J., Grandy, D. K., Lester, H. A., Davidson, N., and Chavkin, C. (1995). Kappa-opioid receptors couple to inwardly rectifying potassium channels when coexpressed by Xenopus oocytes. Mol. Pharmacol. 47, 551’557. doi: 10.1016/0304-3940(95)11289-9

PubMed Abstract | CrossRef Full Text | Google Scholar

Hicks, S. D., Jacob, P., Perez, O., Baffuto, M., Gagnon, Z., and Middleton, F. A. (2019). The transcriptional signature of a runner’s high. Med. Sci. Sports Exerc. 51, 970–978. doi: 10.1249/MSS.0000000000001865

PubMed Abstract | CrossRef Full Text | Google Scholar

Hou, C., Jia, F., Liu, Y., and Li, L. (2006). CSF serotonin, 5-hydroxyindolacetic acid and neuropeptide Y levels in severe major depressive disorder. Brain Res. 1095, 154–158. doi: 10.1016/j.brainres.2006.04.026

PubMed Abstract | CrossRef Full Text | Google Scholar

Hupalo, S., and Berridge, C. W. (2016). Working memory impairing actions of Corticotropin-Releasing Factor (CRF) neurotransmission in the prefrontal cortex. Neuropsychopharmacology 41, 2733–2740. doi: 10.1038/npp.2016.85

PubMed Abstract | CrossRef Full Text | Google Scholar

Hupalo, S., Bryce, C. A., Bangasser, D. A., Berridge, C. W., Valentino, R. J., and Floresco, S. B. (2019a). Corticotropin-Releasing Factor (CRF) circuit modulation of cognition and motivation. Neurosci. Biobehav. Rev. 103, 50–59. doi: 10.1016/j.neubiorev.2019.06.010

PubMed Abstract | CrossRef Full Text | Google Scholar

Hupalo, S., Martin, A. J., Green, R. K., Devilbiss, D. M., and Berridge, C. W. (2019b). Prefrontal corticotropin-releasing factor (CRF) neurons act locally to modulate frontostriatal cognition and circuit function. J. Neurosci. 39, 2080–2090. doi: 10.1523/jneurosci.2701-18.2019

PubMed Abstract | CrossRef Full Text | Google Scholar

Hurd, Y. L. (1996). Differential messenger RNA expression of prodynorphin and proenkephalin in the human brain. Neuroscience 72, 767–783. doi: 10.1016/0306-4522(96)00002-4

PubMed Abstract | CrossRef Full Text | Google Scholar

Iritani, S., and Satoh, K. (1991). Distribution of somatostatin-immunoreactive cell bodies and fibers in the neocortex of Macaca fuscata. Synapse 9, 50–59. doi: 10.1002/syn.890090108

PubMed Abstract | CrossRef Full Text | Google Scholar

Itoga, C. A., Chen, Y., Fateri, C., Echeverry, P. A., Lai, J. M., Delgado, J., et al. (2019). New viral-genetic mapping uncovers an enrichment of corticotropin-releasing hormone-expressing neuronal inputs to the nucleus accumbens from stress-related brain regions. J. Comp. Neurol. 527, 2474–2487. doi: 10.1002/cne.24676

PubMed Abstract | CrossRef Full Text | Google Scholar

Jackson, J., Karnani, M. M., Zemelman, B. V., Burdakov, D., and Lee, A. K. (2018). Inhibitory control of prefrontal cortex by the claustrum. Neuron 99, 1029.e4–1039.e4. doi: 10.1016/j.neuron.2018.07.031

PubMed Abstract | CrossRef Full Text | Google Scholar

Jacobson, S., Butters, N., and Tovsky, N. J. (1978). Afferent and efferent subcortical projections of behaviorally defined sectors of prefrontal granular cortex. Brain Res. 159, 279–296. doi: 10.1016/0006-8993(78)90535-8

PubMed Abstract | CrossRef Full Text | Google Scholar

Jaferi, A., and Bhatnagar, S. (2007). Corticotropin-releasing hormone receptors in the medial prefrontal cortex regulate hypothalamic-pituitary-adrenal activity and anxiety-related behavior regardless of prior stress experience. Brain Res. 1186, 212–223. doi: 10.1016/j.brainres.2007.07.100

PubMed Abstract | CrossRef Full Text | Google Scholar

James, I. F., Chavkin, C., and Goldstein, A. (1982). Selectivity of dynorphin for κ opioid receptors. Life Sci. 31, 1331–1334. doi: 10.1016/0024-3205(82)90374-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Joshi, D., Catts, V. S., Olaya, J. C., and Weickert, C. S. (2015). Relationship between somatostatin and death receptor expression in the orbital frontal cortex in schizophrenia: a postmortem brain mRNA study. NPJ Schizophr. 1:14004. doi: 10.1038/npjschz.2014.4

PubMed Abstract | CrossRef Full Text | Google Scholar

Kai, Y., Li, Y., Sun, T., Yin, W., Mao, Y., Li, J., et al. (2018). A medial prefrontal cortex-nucleus acumens corticotropin-releasing factor circuitry for neuropathic pain-increased susceptibility to opioid reward. Transl. Psychiatry 8:100. doi: 10.1038/s41398-018-0152-4

PubMed Abstract | CrossRef Full Text | Google Scholar

Kakidani, H., Furutani, Y., Takahashi, H., Noda, M., Morimoto, Y., Hirose, T., et al. (1982). Cloning and sequence analysis of cDNA for porcine β-neo-endorphin/dynorphin precursor. Nature 298, 245–249. doi: 10.1038/298245a0

PubMed Abstract | CrossRef Full Text | Google Scholar

Karisetty, B. C., Joshi, P. C., Kumar, A., and Chakravarty, S. (2017). Sex differences in the effect of chronic mild stress on mouse prefrontal cortical BDNF levels: a role of major ovarian hormones. Neuroscience 356, 89–101. doi: 10.1016/j.neuroscience.2017.05.020

PubMed Abstract | CrossRef Full Text | Google Scholar

Karkhanis, A., Holleran, K. M., and Jones, S. R. (2017). Dynorphin/kappa opioid receptor signaling in preclinical models of alcohol, drug and food addiction. Int. Rev. Neurobiol. 136, 53–88. doi: 10.1016/bs.irn.2017.08.001

PubMed Abstract | CrossRef Full Text | Google Scholar

Kaseda, E. T., and Levine, A. J. (2020). Post-traumatic stress disorder: a differential diagnostic consideration for COVID-19 survivors. Clin. Neuropsychol. doi: 10.1080/13854046.2020.1811894 [Epub ahead of print].

PubMed Abstract | CrossRef Full Text | Google Scholar

Kash, T. L., Pleil, K. E., Marcinkiewcz, C. A., Lowery-Gionta, E. G., Crowley, N., Mazzone, C., et al. (2015). Neuropeptide regulation of signaling and behavior in the BNST. Mol. Cells 38, 1–13. doi: 10.14348/molcells.2015.2261

PubMed Abstract | CrossRef Full Text | Google Scholar

Kash, T. L., and Winder, D. G. (2006). Neuropeptide Y and corticotropin-releasing factor bi-directionally modulate inhibitory synaptic transmission in the bed nucleus of the stria terminalis. Neuropharmacology 51, 1013–1022. doi: 10.1016/j.neuropharm.2006.06.011

PubMed Abstract | CrossRef Full Text | Google Scholar

Keller, B., La Harpe, R., and García-Sevilla, J. A. (2017). Upregulation of IRAS/nischarin (I1-imidazoline receptor), a regulatory protein of μ-opioid receptor trafficking, in postmortem prefrontal cortex of long-term opiate and mixed opiate/cocaine abusers. Neurochem. Int. 108, 282–286. doi: 10.1016/j.neuint.2017.04.017

PubMed Abstract | CrossRef Full Text | Google Scholar

Ketchesin, K. D., Huang, N. S., and Seasholtz, A. F. (2017). Cell type-specific expression of corticotropin-releasing hormone-binding protein in GABAergic interneurons in the prefrontal cortex. Front. Neuroanat. 11:90. doi: 10.3389/fnana.2017.00090

PubMed Abstract | CrossRef Full Text | Google Scholar

Ketchesin, K. D., Stinnett, G. S., and Seasholtz, A. F. (2016). Binge drinking decreases corticotropin-releasing factor-binding protein expression in the medial prefrontal cortex of mice. Alcohol. Clin. Exp. Res. 40, 1641–1650. doi: 10.1111/acer.13119

PubMed Abstract | CrossRef Full Text | Google Scholar

Kievit, J., and Kuypers, H. G. J. M. (1975). Basal forebrain and hypothalamic connections to frontal and parietal cortex in the rhesus monkey. Science 187, 660–662. doi: 10.1126/science.1114317

PubMed Abstract | CrossRef Full Text | Google Scholar

Kiosterakis, G., Stamatakis, A., Diamantopoulou, A., Fameli, M., and Stylianopoulou, F. (2009). Long-term effects of neonatal handling on Mu-opioid receptor levels in the brain of the offspring. Dev. Psychobiol. 51, 439–449. doi: 10.1002/dev.20383

PubMed Abstract | CrossRef Full Text | Google Scholar

Knoll, A. T., and Carlezon, W. A. (2010). Dynorphin, stress and depression. Brain Res. 1314, 56–73. doi: 10.1016/j.brainres.2009.09.074

PubMed Abstract | CrossRef Full Text | Google Scholar

Kobayashi, M., Hayashi, Y., Fujimoto, Y., and Matsuoka, I. (2018). Decreased parvalbumin and somatostatin neurons in medial prefrontal cortex in BRINP1-KO mice. Neurosci. Lett. 683, 82–88. doi: 10.1016/j.neulet.2018.06.050

PubMed Abstract | CrossRef Full Text | Google Scholar

Koenigs, M., and Grafman, J. (2009). Posttraumatic stress disorder: the role of medial prefrontal cortex and amygdala. Neuroscientist 15, 540–548. doi: 10.1177/1073858409333072

PubMed Abstract | CrossRef Full Text | Google Scholar

Kofman, Y. B., and Garfin, D. R. (2020). Home is not always a haven: the domestic violence crisis amid the COVID-19 pandemic. Psychol. Trauma 12, S199–S201. doi: 10.1037/tra0000866

PubMed Abstract | CrossRef Full Text | Google Scholar

Kolb, B., Mychasiuk, R., Muhammad, A., Li, Y., Frost, D. O., and Gibb, R. (2012). Experience and the developing prefrontal cortex. Proc. Natl. Acad. Sci. U S A 109, 17186–17196. doi: 10.1073/pnas.1121251109

PubMed Abstract | CrossRef Full Text | Google Scholar

Konkoy, C. S., and Childers, S. R. (1993). Relationship between kappa1 opioid receptor binding and inhibition of adenylyl cyclase in guinea pig brain membranes. Biochem. Pharmacol. 45, 207–216. doi: 10.1016/0006-2952(93)90394-c

PubMed Abstract | CrossRef Full Text | Google Scholar

Koob, G. F. (2013). Addiction is a reward deficit and stress surfeit disorder. Front. Psychiatry 4:72. doi: 10.3389/fpsyt.2013.00072

PubMed Abstract | CrossRef Full Text | Google Scholar

Koob, G. F., and Heinrichs, S. C. (1999). A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Res. 848, 141–152. doi: 10.1016/s0006-8993(99)01991-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Koob, G. F., and Le Moal, M. (2008). Neurobiological mechanisms for opponent motivational processes in addiction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 3113–3123. doi: 10.1098/rstb.2008.0094

PubMed Abstract | CrossRef Full Text | Google Scholar

Koob, G. F., and Volkow, N. D. (2016). Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3, 760–773. doi: 10.1016/s2215-0366(16)00104-8

PubMed Abstract | CrossRef Full Text | Google Scholar

Kopp, J., Xu, Z. Q., Zhang, X., Pedrazzini, T., Herzog, H., Kresse, A., et al. (2002). Expression of the neuropeptide Y Y1 receptor in the CNS of rat and of wild-type and Y1 receptor knock-out mice. Focus on immunohistochemical localization. Neuroscience 111, 443–532. doi: 10.1016/s0306-4522(01)00463-8

PubMed Abstract | CrossRef Full Text | Google Scholar

Krishnan, V., and Nestler, E. J. (2011). Animal models of depression: molecular perspectives. Curr. Top. Behav. Neurosci. 7, 121–147. doi: 10.1007/7854_2010_108

PubMed Abstract | CrossRef Full Text | Google Scholar

Krulich, L., Dhariwal, A. P., and McCann, S. M. (1968). Stimulatory and inhibitory effects of purified hypothalamic extracts on growth hormone release from rat pituitary in vitro. Endocrinology 83, 783–790. doi: 10.1210/endo-83-4-783

PubMed Abstract | CrossRef Full Text | Google Scholar

Kumar, U. (2005). Expression of somatostatin receptor subtypes (SSTR1–5) in Alzheimer’s disease brain: An immunohistochemical analysis. Neuroscience 134, 525–538. doi: 10.1016/j.neuroscience.2005.04.001

PubMed Abstract | CrossRef Full Text | Google Scholar

Kumar, U., and Grant, M. (2010). Somatostatin and somatostatin receptors. Results Probl. Cell Differ. 50, 137–184. doi: 10.1007/400_2009_29

CrossRef Full Text | Google Scholar

Kuromitsu, J., Yokoi, A., Kawai, T., Nagasu, T., Aizawa, T., Haga, S., et al. (2001). Reduced neuropeptide Y mRNA levels in the frontal cortex of people with schizophrenia and bipolar disorder. Gene Expr. Patterns. 1, 17–21. doi: 10.1016/s1567-133x(01)00003-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Kurumaji, A., Takashima, M., and Shibuya, H. (1987). Cold and immobilization stress-induced changes in pain responsiveness and brain met-enkephalin-like immunoreactivity in the rat. Peptides 8, 355–359. doi: 10.1016/0196-9781(87)90111-2

PubMed Abstract | CrossRef Full Text | Google Scholar

Lahti, R. A., Mickelson, M. M., Jodelis, K. S., and McCall, J. M. (1989). Comparative neuroanatomical distribution of the κ and μ opioid receptors in guinea pig brain sections. Eur. J. Pharmacol. 166, 563–566. doi: 10.1016/0014-2999(89)90377-4

PubMed Abstract | CrossRef Full Text | Google Scholar

Laubach, M., Amarante, L. M., Swanson, K., and White, S. R. (2018). What, if anything, is rodent prefrontal cortex? eNeuro 5:ENEURO.0315-18.2018. doi: 10.1523/ENEURO.0315-18.2018

PubMed Abstract | CrossRef Full Text | Google Scholar

Lawrence, D. M. P., Joseph, D. B., and Bidlack, J. M. (1995). Kappa opioid receptors expressed on three related thymoma cell lines. Differences in receptor-effector coupling. Biochem. Pharmacol. 49, 81–89. doi: 10.1016/0006-2952(94)00440-w

PubMed Abstract | CrossRef Full Text | Google Scholar

LeDoux, J. E. (1993). Emotional memory systems in the brain. Behav. Brain Res. 58, 69–79. doi: 10.1016/0166-4328(93)90091-4

PubMed Abstract | CrossRef Full Text | Google Scholar

Leriche, M., Cote-Vélez, A., and Méndez, M. (2007). Presence of pro-opiomelanocortin mRNA in the rat medial prefrontal cortex, nucleus accumbens and ventral tegmental area: studies by RT-PCR and in situ hybridization techniques. Neuropeptides 41, 421–431. doi: 10.1016/j.npep.2007.08.004

PubMed Abstract | CrossRef Full Text | Google Scholar

Lewis, D. A., Campbell, M. J., and Morrison, J. H. (1986). An immunohistochemical characterization of somatostatin-28 and somatostatin-281–12 in monkey prefrontal cortex. J. Comp. Neurol. 248, 1–18. doi: 10.1002/cne.902480102

PubMed Abstract | CrossRef Full Text | Google Scholar

Lewis, K., Li, C., Perrin, M. H., Blount, A., Kunitake, K., Donaldson, C., et al. (2001). Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc. Natl. Acad. Sci. U S A 98, 7570–7575. doi: 10.1073/pnas.121165198

PubMed Abstract | CrossRef Full Text | Google Scholar

Li, C., Liu, Y., Yin, S., Lu, C., Liu, D., Jiang, H., et al. (2015). Long-term effects of early adolescent stress: dysregulation of hypothalamic-pituitary-adrenal axis and central corticotropin releasing factor receptor 1 expression in adult male rats. Behav. Brain Res. 288, 39–49. doi: 10.1016/j.bbr.2015.04.007

PubMed Abstract | CrossRef Full Text | Google Scholar

Li, C., Pleil, K. E., Stamatakis, A. M., Busan, S., Vong, L., Lowell, B. B., et al. (2012). Presynaptic inhibition of gamma-aminobutyric acid release in the bed nucleus of the stria terminalis by kappa opioid receptor signaling. Biol. Psychiatry 71, 725–732. doi: 10.1016/j.biopsych.2011.11.015

PubMed Abstract | CrossRef Full Text | Google Scholar

Li, Q., Bartley, A. F., Lynn, X., and Dobrunz, E. (2017). Endogenously released neuropeptide Y suppresses hippocampal short-term facilitation and is impaired by stress-induced anxiety. J. Neurosci. 37, 23–37. doi: 10.1523/JNEUROSCI.2599-16.2016

PubMed Abstract | CrossRef Full Text | Google Scholar

Li, W., Papilloud, A., Lozano-Montes, L., Zhao, N., Ye, X., Zhang, X., et al. (2018). Stress impacts the regulation neuropeptides in the rat hippocampus and prefrontal cortex. Proteomics 18:e1700408. doi: 10.1002/pmic.201700408

PubMed Abstract | CrossRef Full Text | Google Scholar

Liguz-Lecznar, M., Urban-Ciecko, J., and Kossut, M. (2016). Somatostatin and somatostatin-containing neurons in shaping neuronal activity and plasticity. Front. Neural Circuits 10:48. doi: 10.3389/fncir.2016.00048

PubMed Abstract | CrossRef Full Text | Google Scholar

Liu, J., Yu, B., Neugebauer, V., Grigoriadis, D. E., Rivier, J., Vale, W. W., et al. (2004). Corticotropin-releasing factor and urocortin I modulate excitatory glutamatergic synaptic transmission. J. Neurosci. 24, 4020–4029. doi: 10.1523/jneurosci.5531-03.2004

PubMed Abstract | CrossRef Full Text | Google Scholar

Lovenberg, T. W., Liaw, C. W., Grigoriadis, D. E., Clevenger, W., Chalmers, D. T., De Souza, E. B., et al. (1995). Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain. Proc. Natl. Acad. Sci. U S A 92, 836–840. doi: 10.1073/pnas.92.3.836

PubMed Abstract | CrossRef Full Text | Google Scholar

Lowery-Gionta, E. G., Crowley, N. A., Bukalo, O., Silverstein, S., Holmes, A., and Kash, T. L. (2018). Chronic stress dysregulates amygdalar output to the prefrontal cortex. Neuropharmacology 139, 68–75. doi: 10.1016/j.neuropharm.2018.06.032

PubMed Abstract | CrossRef Full Text | Google Scholar

Lowery-Gionta, E. G., Navarro, M., Li, C., Pleil, K. E., Rinker, J. A., Cox, B. R., et al. (2012). Corticotropin releasing factor signaling in the central amygdala is recruited during binge-like ethanol consumption in C57BL/6J mice. J. Neurosci. 32, 3405–3413. doi: 10.1523/jneurosci.6256-11.2012

PubMed Abstract | CrossRef Full Text | Google Scholar

Lundberg, J. M., Terenius, L., Hokfelt, T., Martling, C. R., Tatemoto, K., Mutt, V., et al. (1982). Neuropeptide Y (NPY)-like immunoreactivity in peripheral noradrenergic neurons and effects of NPY on sympathetic function. Acta Physiol. Scand. 116, 477–480. doi: 10.1111/j.1748-1716.1982.tb07171.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Magalhaes, A. C., Holmes, K. D., Dale, L. B., Comps-Agrar, L., Lee, D., Yadav, P. N., et al. (2010). CRF receptor 1 regulates anxiety behavior via sensitization of 5-HT2 receptor signaling. Nat. Neurosci. 13, 622–629. doi: 10.1038/nn.2529

PubMed Abstract | CrossRef Full Text | Google Scholar

Mansour, A., Burke, S., Pavlic, R. J., Akil, H., and Watson, S. J. (1996). Immunohistochemical localization of the cloned κ1 receptor in the rat CNS and pituitary. Neuroscience 71, 671–690. doi: 10.1016/0306-4522(95)00464-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Marek, G. J., and Aghajanian, G. K. (1998). 5-Hydroxytryptamine-induced excitatory postsynaptic currents in neocortical layer V pyramidal cells: suppression by μ-opiate receptor activation. Neuroscience 86, 485–497. doi: 10.1016/s0306-4522(98)00043-8

PubMed Abstract | CrossRef Full Text | Google Scholar

Marek, G. J., Wright, R. A., Gewirtz, J. C., and Schoepp, D. D. (2001). A major role for thalamocortical afferents in serotonergic hallucinogen receptor function in the rat neocortex. Neuroscience 105, 379–392. doi: 10.1016/s0306-4522(01)00199-3

PubMed Abstract | CrossRef Full Text | Google Scholar

Marinelli, P. W., Kiianmaa, K., and Gianoulakis, C. (2000). Opioid propeptide mRNA content and receptor density in the brains of AA and ANA rats. Life Sci. 66, 1915–1927. doi: 10.1016/s0024-3205(00)00517-8

PubMed Abstract | CrossRef Full Text | Google Scholar

Marshall, B., Bland, M. K., Hulla, R., and Gatchel, R. J. (2019). Considerations in addressing the opioid epidemic and chronic pain within the USA. Pain Manag. 9, 131–138. doi: 10.2217/pmt-2018-0070

PubMed Abstract | CrossRef Full Text | Google Scholar

Matthews, S. G., Heavens, R. P., and Sirinathsinghji, D. J. S. (1992). Distribution and cellular localization of preproenkephalin mRNA in the ovine brain and pituitary. Mol. Brain Res. 12, 349–355. doi: 10.1016/0169-328x(92)90139-3

PubMed Abstract | CrossRef Full Text | Google Scholar

McFalls, A. J., Imperio, C. G., Bixler, G., Freeman, W. M., Grigson, P. S., and Vrana, K. E. (2016). Reward devaluation and heroin escalation is associated with differential expression of CRF signaling genes. Brain Res. Bull. 123, 81–93. doi: 10.1016/j.brainresbull.2015.11.009

PubMed Abstract | CrossRef Full Text | Google Scholar

McGarry, L. M., and Carter, A. G. (2017). Prefrontal cortex drives distinct projection neurons in the basolateral amygdala. Cell Rep. 21, 1426–1433. doi: 10.1016/j.celrep.2017.10.046

PubMed Abstract | CrossRef Full Text | Google Scholar

McGuire, J. L., Larke, L. E., Sallee, F. R., Herman, J. P., and Sah, R. (2011). Differential regulation of neuropeptide Y in the amygdala and prefrontal cortex during recovery from chronic variable stress. Front. Behav. Neurosci. 5:54. doi: 10.3389/fnbeh.2011.00054

PubMed Abstract | CrossRef Full Text | Google Scholar

McIntosh, T. K., Head, V. A., and Faden, A. I. (1987). Alterations in regional concentrations of endogenous opioids following traumatic brain injury in the cat. Brain Res. 425, 225–233. doi: 10.1016/0006-8993(87)90505-1

PubMed Abstract | CrossRef Full Text | Google Scholar

McKinney, B. C., Lin, C. W., Oh, H., Tseng, G. C., Lewis, D. A., and Sibille, E. (2015). Hypermethylation of BDNF and SST genes in the orbital frontal cortex of older individuals: a putative mechanism for declining gene expression with age. Neuropsychopharmacology 40, 2604–2613. doi: 10.1038/npp.2015.107

PubMed Abstract | CrossRef Full Text | Google Scholar

McKlveen, J. M., Moloney, R. D., Scheimann, J. R., Myers, B., and Herman, J. P. (2019). “Braking” the prefrontal cortex: the role of glucocorticoids and interneurons in stress adaptation and pathology. Biol. Psychiatry 86, 669–681. doi: 10.1016/j.biopsych.2019.04.032

PubMed Abstract | CrossRef Full Text | Google Scholar

McLennan, G. P., Kiss, A., Miyatake, M., Belcheva, M. M., Chambers, K. T., Pozek, J. J., et al. (2008). Kappa opioids promote the proliferation of astrocytes via Gβγ and β-arrestin 2-dependent MAPK-mediated pathways. J. Neurochem. 107, 1753–1765. doi: 10.1111/j.1471-4159.2008.05745.x

PubMed Abstract | CrossRef Full Text | Google Scholar

McReynolds, J. R., Peña, D. F., Blacktop, J. M., and Mantsch, J. R. (2014). Neurobiological mechanisms underlying relapse to cocaine use: contributions of CRF and noradrenergic systems and regulation by glucocorticoids. Stress 17, 22–38. doi: 10.3109/10253890.2013.872617

PubMed Abstract | CrossRef Full Text | Google Scholar

Melas, P. A., Mannervik, M., Mathé, A. A., and Lavebratt, C. (2012). Neuropeptide Y: identification of a novel rat mRNA splice-variant that is downregulated in the hippocampus and the prefrontal cortex of a depression-like model. Peptides 35, 49–55. doi: 10.1002/syn.20514

PubMed Abstract | CrossRef Full Text | Google Scholar

Melchitzky, D. S., and Lewis, D. A. (2008). Dendritic-targeting GABA neurons in monkey prefrontal cortex: comparison of somatostatin- and calretinin-immunoreactive axon terminals. Synapse 62, 456–465. doi: 10.1002/syn.20514

PubMed Abstract | CrossRef Full Text | Google Scholar

Mellios, N., Huang, H. S., Baker, S. P., Galdzicka, M., Ginns, E., and Akbarian, S. (2009). Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biol. Psychiatry 65, 1006–1014. doi: 10.1016/j.biopsych.2008.11.019

PubMed Abstract | CrossRef Full Text | Google Scholar

Meng, Q. Y., Chen, X. N., Tong, D. L., and Zhou, J. N. (2011). Stress and glucocorticoids regulated corticotropin releasing factor in rat prefrontal cortex. Mol. Cell. Endocrinol. 342, 54–63. doi: 10.1016/j.mce.2011.05.035

PubMed Abstract | CrossRef Full Text | Google Scholar

Miguel, T. T., Gomes, K. S., and Nunes-de-Souza, R. L. (2014). Tonic modulation of anxiety-like behavior by corticotropin-releasing factor (CRF) type 1 receptor (CRF1) within the medial prefrontal cortex (mPFC) in male mice: role of protein kinase A (PKA). Horm. Behav. 66, 247–256. doi: 10.1016/j.yhbeh.2014.05.003

PubMed Abstract | CrossRef Full Text | Google Scholar

Millan, M. A., Jacobowitz, D. M., Hauger, R. L., Catt, K. J., and Aguilera, G. (1986). Distribution of corticotropin-releasing factor receptors in primate brain. Proc. Natl. Acad. Sci. U S A 83, 1921–1925. doi: 10.1073/pnas.83.6.1921

PubMed Abstract | CrossRef Full Text | Google Scholar

Morales-Mulia, M., Panayi, F., Lambás-Señas, L., Scarna, H., and Méndez, M. (2007). Changes in Proenkephalin mRNA expression in forebrain areas after amphetamine-induced behavioural sensitization. Pharmacol. Biochem. Behav. 87, 232–240. doi: 10.1016/j.pbb.2007.04.019

PubMed Abstract | CrossRef Full Text | Google Scholar

Morisset, J. (2017). Somatostatin: one of the rare multifunctional inhibitors of mammalian species. Pancreas 46, 8–18. doi: 10.1097/MPA.0000000000000716

PubMed Abstract | CrossRef Full Text | Google Scholar

Morris, H. M., Hashimoto, T., and Lewis, D. A. (2008). Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder. Cereb. Cortex 18, 1575–1587. doi: 10.1093/cercor/bhm186

PubMed Abstract | CrossRef Full Text | Google Scholar

Murray, E. A., Wise, S. P., and Drevets, W. C. (2011). Localization of dysfunction in major depressive disorder: prefrontal cortex and amygdala. Biol. Psychiatry 69, e43–e54. doi: 10.1016/j.biopsych.2010.09.041

PubMed Abstract | CrossRef Full Text | Google Scholar

Murueta-Goyena, A., Ortuzar, N., Lafuente, J. V., and Bengoetxea, H. (2020). Enriched environment reverts somatostatin interneuron loss in MK-801 model of schizophrenia. Mol. Neurobiol. 57, 125–134. doi: 10.1007/s12035-019-01762-y

PubMed Abstract | CrossRef Full Text | Google Scholar

Northoff, G., and Sibille, E. (2014). Why are cortical GABA neurons relevant to internal focus in depression? A cross-level model linking cellular, biochemical and neural network findings. Mol. Psychiatry 19, 966–977. doi: 10.1038/mp.2014.68

PubMed Abstract | CrossRef Full Text | Google Scholar

Oh, H., Piantadosi, S. C., Rocco, B. R., Lewis, D. A., Watkins, S. C., and Sibille, E. (2019). The role of dendritic brain-derived neurotrophic factor transcripts on altered inhibitory circuitry in depression. Biol. Psychiatry 85, 517–526. doi: 10.1016/j.biopsych.2018.09.026

PubMed Abstract | CrossRef Full Text | Google Scholar

Ohata, H., and Shibasaki, T. (2011). Microinjection of different doses of corticotropin-releasing factor into the medial prefrontal cortex produces effects opposing anxiety-related behavior in rats. J. Nippon Med. Sch. 78, 286–292. doi: 10.1272/jnms.78.286

PubMed Abstract | CrossRef Full Text | Google Scholar

Olianas, M. C., Dedoni, S., and Onali, P. (2012). Potentiation of dopamine D1-like receptor signaling by concomitant activation of δ- and μ-opioid receptors in mouse medial prefrontal cortex. Neurochem. Int. 61, 1404–1416. doi: 10.1016/j.neuint.2012.10.005

PubMed Abstract | CrossRef Full Text | Google Scholar

Olpe, H. R., Balcar, V. J., Bittiger, H., Rink, H., and Sieber, P. (1980). Central actions of somatostatin. Eur. J. Pharmacol. 63, 127–133. doi: 10.1016/0014-2999(80)90436-7

CrossRef Full Text | Google Scholar

Ordway, G. A., Stockmeier, C. A., Meltzer, H. Y., Overholser, J. C., Jaconetta, S., and Widdowson, P. S. (1995). Neuropeptide Y in frontal cortex is not altered in major depression. J. Neurochem. 65, 1646–1650. doi: 10.1046/j.1471-4159.1995.65041646.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Orozco-Cabal, L., Liu, J., Pollandt, S., Schmidt, K., Shinnick-Gallagher, P., and Gallagher, J. P. (2008). dopamine and corticotropin-releasing factor synergistically alter basolateral amygdala-to-medial prefrontal cortex synaptic transmission: functional switch after chronic cocaine administration. J. Neurosci. 28, 529–542. doi: 10.1523/JNEUROSCI.2666-07.2008

PubMed Abstract | CrossRef Full Text | Google Scholar

Orozco-Cabal, L., Pollandt, S., Liu, J., Shinnick-Gallagher, P., and Gallagher, J. P. (2006). Regulation of synaptic transmission by CRF receptors. Rev. Neurosci. 17, 279–307. doi: 10.1515/revneuro.2006.17.3.279

PubMed Abstract | CrossRef Full Text | Google Scholar

Ouhaz, Z., Fleming, H., and Mitchell, A. S. (2018). Cognitive functions and neurodevelopmental disorders involving the prefrontal cortex and mediodorsal thalamus. Front. Neurosci. 12:33. doi: 10.3389/fnins.2018.00033

PubMed Abstract | CrossRef Full Text | Google Scholar

Overstreet, D. H., Friedman, E., Mathé, A. A., and Yadid, G. (2005). The Flinders Sensitive Line rat: a selectively bred putative animal model of depression. Neurosci. Biobehav. Rev. 29, 739–759. doi: 10.1016/j.neubiorev.2005.03.015

PubMed Abstract | CrossRef Full Text | Google Scholar

Owens, M. J., and Nemeroff, C. B. (1993). The role of corticotropin-releasing factor in the pathophysiology of affective and anxiety disorders: laboratory and clinical studies. Ciba Found. Symp. 172, 296–308. doi: 10.1002/9780470514368.ch15

PubMed Abstract | CrossRef Full Text | Google Scholar

Pallis, E., Vasilaki, A., Fehlmann, D., Kastellakis, A., Hoyer, D., Spyraki, C., et al. (2009). Antidepressants influence somatostatin levels and receptor pharmacology in brain. Neuropsychopharmacology 34, 952–963. doi: 10.1038/npp.2008.133

PubMed Abstract | CrossRef Full Text | Google Scholar

Palmisano, M., Caputi, F. F., Mercatelli, D., Romualdi, P., and Candeletti, S. (2019). Dynorphinergic system alterations in the corticostriatal circuitry of neuropathic mice support its role in the negative affective component of pain. Genes Brain Behav. 18:e12467. doi: 10.1111/gbb.12467

PubMed Abstract | CrossRef Full Text | Google Scholar

Pandey, G. N., Rizavi, H. S., Bhaumik, R., and Ren, X. (2019). Increased protein and mRNA expression of corticotropin-releasing factor (CRF), decreased CRF receptors and CRF binding protein in specific postmortem brain areas of teenage suicide subjects. Psychoneuroendocrinology 106, 233–243. doi: 10.1016/j.psyneuen.2019.04.015

PubMed Abstract | CrossRef Full Text | Google Scholar

Park, J., and Moghaddam, B. (2017). Impact of anxiety on prefrontal cortex encoding of cognitive flexibility. Neuroscience 345, 193–202. doi: 10.1016/j.neuroscience.2016.06.013

PubMed Abstract | CrossRef Full Text | Google Scholar

Patel, Y. C., Greenwood, M. T., Warszynska, A., Panetta, R., and Srikant, C. B. (1994). All five cloned human somatostatin receptors (hSSTR1–5) are functionally coupled to adenylyl cyclase. Biochem. Biophys. Res. Commun. 198, 605–612. doi: 10.1006/bbrc.1994.1088

PubMed Abstract | CrossRef Full Text | Google Scholar

Peckys, D., and Hurd, Y. L. (2001). Prodynorphin and κ opioid receptor mRNA expression in the cingulate and prefrontal cortices of subjects diagnosed with schizophrenia or affective disorders. Brain Res. Bull. 55, 619–624. doi: 10.1016/s0361-9230(01)00525-1

PubMed Abstract | CrossRef Full Text | Google Scholar

Pedragosa-Badia, X., Stichel, J., and Beck-Sickinger, A. G. (2013). Neuropeptide y receptors: how to get subtype selectivity. Front. Endocrinol. 4:5. doi: 10.3389/fendo.2013.00005

PubMed Abstract | CrossRef Full Text | Google Scholar

Pentkowski, N. S., Tovote, P., Zavala, A. R., Litvin, Y., Blanchard, D. C., Spiess, J., et al. (2013). Cortagine infused into the medial prefrontal cortex attenuates predator-induced defensive behaviors and Fos protein production in selective nuclei of the amygdala in male CD1 mice. Horm. Behav. 64, 519–526. doi: 10.1016/j.yhbeh.2013.06.008

PubMed Abstract | CrossRef Full Text | Google Scholar

Perez, S. M., Boley, A., and Lodge, D. J. (2019). Region specific knockdown of Parvalbumin or Somatostatin produces neuronal and behavioral deficits consistent with those observed in schizophrenia. Transl. Psychiatry 9:264. doi: 10.1038/s41398-019-0603-6

PubMed Abstract | CrossRef Full Text | Google Scholar

Perrin, M., Donaldson, C., Chen, R., Blount, A., Berggren, T., Bilezikjian, L., et al. (1995). Identification of a second corticotropin-releasing factor receptor gene and characterization of a cDNA expressed in heart. Proc. Natl. Acad. Sci. U S A 92, 2969–2973. doi: 10.1073/pnas.92.7.2969

PubMed Abstract | CrossRef Full Text | Google Scholar

Pleil, K. E., Lowery-Gionta, E. G., Crowley, N. A., Li, C., Marcinkiewcz, C. A., Rose, J. H., et al. (2015). Effects of chronic ethanol exposure on neuronal function in the prefrontal cortex and extended amygdala. Neuropharmacology 99, 735–749. doi: 10.1016/j.neuropharm.2015.06.017

PubMed Abstract | CrossRef Full Text | Google Scholar

Pons, J., Kitlinska, J., Jacques, D., Perreault, C., Nader, M., Everhart, L., et al. (2008). Interactions of multiple signaling pathways in neuropeptide Y-mediated bimodal vascular smooth muscle cell growth. Can. J. Physiol. Pharmacol. 86, 438–448. doi: 10.1139/y08-054

PubMed Abstract | CrossRef Full Text | Google Scholar

Porrino, L. J., Crane, A. M., and Goldman-Rakic, P. S. (1981). Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys. J. Comp. Neurol. 198, 121–136. doi: 10.1002/cne.901980111

PubMed Abstract | CrossRef Full Text | Google Scholar

Pradayrol, L., Jörnvall, H., Mutt, V., and Ribet, A. (1980). N-terminally extended somatostatin: the primary structure of somatostatin-28. FEBS Lett. 109, 55–58. doi: 10.1016/0014-5793(80)81310-x

PubMed Abstract | CrossRef Full Text | Google Scholar

Rai, U., Thrimawithana, T. R., Valery, C., and Young, S. A. (2015). Therapeutic uses of somatostatin and its analogues: current view and potential applications. Pharmacol. Ther. 152, 98–110. doi: 10.1016/j.pharmthera.2015.05.007

PubMed Abstract | CrossRef Full Text | Google Scholar

Reyes, T. M., Lewis, K., Perrin, M. H., Kunitake, K. S., Vaughan, J., Arias, C. A., et al. (2001). Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc. Natl. Acad. Sci. U S A 98, 2843–2848. doi: 10.1073/pnas.051626398

PubMed Abstract | CrossRef Full Text | Google Scholar

Robinson, S. L., Marrero, I. M., Perez-Heydrich, C. A., Sepulveda-Orengo, M. T., Reissner, K. J., and Thiele, T. E. (2019a). Medial prefrontal cortex neuropeptide Y modulates binge-like ethanol consumption in C57BL/6J mice. Neuropsychopharmacology 44, 1132–1140. doi: 10.1038/s41386-018-0310-7

PubMed Abstract | CrossRef Full Text | Google Scholar

Robinson, S. L., Perez-Heydrich, C. A., and Thiele, T. E. (2019b). Corticotropin releasing factor type 1 and 2 receptor signaling in the medial prefrontal cortex modulates Binge-like ethanol consumption in C57BL/6J mice. Brain Sci. 9:171. doi: 10.3390/brainsci9070171

PubMed Abstract | CrossRef Full Text | Google Scholar

Robinson, S. L., and Thiele, T. E. (2017). The role of neuropeptide Y (NPY) in alcohol and drug abuse disorders. Int. Rev. Neurobiol. 136, 177–197. doi: 10.1016/bs.irn.2017.06.005

PubMed Abstract | CrossRef Full Text | Google Scholar

Robinson, S. L., and Thiele, T. E. (2020). A role for the neuropeptide somatostatin in the neurobiology of behaviors associated with substances abuse and affective disorders. Neuropharmacology 167:107983. doi: 10.1016/j.neuropharm.2020.107983

PubMed Abstract | CrossRef Full Text | Google Scholar

Rosa, S. G., Pesarico, A. P., Martini, F., and Nogueira, C. W. (2018a). m-trifluoromethyl-diphenyl diselenide regulates prefrontal cortical MOR and KOR protein levels and abolishes the phenotype induced by repeated forced swim stress in mice. Mol. Neurobiol. 55, 8991–9000. doi: 10.1007/s12035-018-1024-x

PubMed Abstract | CrossRef Full Text | Google Scholar

Rosa, S. G., Pesarico, A. P., and Nogueira, C. W. (2018b). m-Trifluoromethyl-diphenyl diselenide promotes resilience to social avoidance induced by social defeat stress in mice: contribution of opioid receptors and MAPKs. Prog. Neuropsychopharmacol. Biol. Psychiatry 82, 123–135. doi: 10.1016/j.pnpbp.2017.11.021

PubMed Abstract | CrossRef Full Text | Google Scholar

Rossier, J. (1988). Biosynthesis of opioid peptides. Ann. Endocrinol. 49, 371–373.

PubMed Abstract | Google Scholar

Sabban, E. L., Alaluf, L. G., and Serova, L. I. (2016). Potential of neuropeptide Y for preventing or treating post-traumatic stress disorder. Neuropeptides 56, 19–24. doi: 10.1016/j.npep.2015.11.004

PubMed Abstract | CrossRef Full Text | Google Scholar

Saffari, R., Teng, Z., Zhang, M., Kravchenko, M., Hohoff, C., Ambrée, O., et al. (2016). NPY+-, but not PV+-GABAergic neurons mediated long-range inhibition from infra-to prelimbic cortex. Transl. Psychiatry 6:e736. doi: 10.1038/tp.2016.7

PubMed Abstract | CrossRef Full Text | Google Scholar

Sah, R., Ekhator, N. N., Jefferson-Wilson, L., Horn, P. S., and Geracioti, T. D. (2014). Cerebrospinal fluid neuropeptide Y in combat veterans with and without posttraumatic stress disorder. Psychoneuroendocrinology 40, 277–283. doi: 10.1016/j.psyneuen.2013.10.017

PubMed Abstract | CrossRef Full Text | Google Scholar

Sah, R., Ekhator, N. N., Strawn, J. R., Sallee, F. R., Baker, D. G., Horn, P. S., et al. (2009). Low cerebrospinal fluid neuropeptide Y concentrations in posttraumatic stress disorder. Biol. Psychiatry 66, 705–707. doi: 10.1016/j.biopsych.2009.04.037

PubMed Abstract | CrossRef Full Text | Google Scholar

Sakai, K., Maeda, K., Chihara, K., and Kaneda, H. (1995). Increases in cortical neuropeptide Y and somatostatin concentrations following haloperidol-depot treatment in rats. Neuropeptides 29, 157–161. doi: 10.1016/0143-4179(95)90018-7

PubMed Abstract | CrossRef Full Text | Google Scholar

Salzman, C. D., and Fusi, S. (2010). Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annu. Rev. Neurosci. 33, 173–202. doi: 10.1146/annurev.neuro.051508.135256

PubMed Abstract | CrossRef Full Text | Google Scholar

Sánchez, M. M., Young, L. J., Plotsky, P. M., and Insel, T. R. (1999). Autoradiographic and in situ hybridization localization of corticotropin-releasing factor 1 and 2 receptors in nonhuman primate brain. J. Comp. Neurol. 408, 365–377. doi: 10.1002/(sici)1096-9861(19990607)408:3<365::aid-cne5>3.0.co;2-n

PubMed Abstract | CrossRef Full Text | Google Scholar

Schmeltzer, S. N., Vollmer, L. L., Rush, J. E., Weinert, M., Dolgas, C. M., and Sah, R. (2015). History of chronic stress modifies acute stress-evoked fear memory and acoustic startle in male rats. Stress 18, 244–253. doi: 10.3109/10253890.2015.1016495

PubMed Abstract | CrossRef Full Text | Google Scholar

Schreiber, A. L., Lu, Y. L., Baynes, B. B., Richardson, H. N., and Gilpin, N. W. (2017). Corticotropin-releasing factor in ventromedial prefrontal cortex mediates avoidance of a traumatic stress-paired context. Neuropharmacology 113, 323–330. doi: 10.1016/j.neuropharm.2016.05.008

PubMed Abstract | CrossRef Full Text | Google Scholar

Selleck, R. A., Giacomini, J., Buchholtz, B. D., Lake, C., Sadeghian, K., and Baldo, B. A. (2018). Modulation of appetitive motivation by prefrontal cortical mu-opioid receptors is dependent upon local dopamine D1 receptor signaling. Neuropharmacology 140, 302–309. doi: 10.1016/j.neuropharm.2018.07.033

PubMed Abstract | CrossRef Full Text | Google Scholar

Selleck, R. A., Lake, C., Estrada, V., Riederer, J., Andrzejewski, M., Sadeghian, K., et al. (2015). Endogenous opioid signaling in the medial prefrontal cortex is required for the expression of hunger-induced impulsive action. Neuropsychopharmacology 40, 2464–2474. doi: 10.1038/npp.2015.97

PubMed Abstract | CrossRef Full Text | Google Scholar

Shansky, R. M. (2018). Sex differences in behavioral strategies: avoiding interpretational pitfalls. Curr. Opin. Neurobiol. 49, 95–98. doi: 10.1016/j.conb.2018.01.007

PubMed Abstract | CrossRef Full Text | Google Scholar

Shansky, R. M. (2019). Are hormones a “female problem” for animal research? Science 364, 825–826. doi: 10.1126/science.aaw7570

PubMed Abstract | CrossRef Full Text | Google Scholar

Shansky, R. M. (2020). Sex differences in mechanisms of disease. Genes Brain Behav. 19:e12646. doi: 10.1111/gbb.12646

PubMed Abstract | CrossRef Full Text | Google Scholar

Shenoy, S. S., and Lui, F. (2018). Biochemistry, Endogenous Opioids, StatPearls. Treasure Island, FL: StatPearls Publishing.

Google Scholar

Shipton, E. A., Shipton, E. E., and Shipton, A. J. (2018). A review of the opioid epidemic: what do we do about it? Pain Ther. 7, 23–36. doi: 10.1007/s40122-018-0096-7

PubMed Abstract | CrossRef Full Text | Google Scholar

Sibille, E., Morris, H. M., Kota, R. S., and Lewis, D. A. (2011). GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders. Int. J. Neuropsychopharmacol. 14, 721–734. doi: 10.1017/s1461145710001616

PubMed Abstract | CrossRef Full Text | Google Scholar

Siciliano, C. A., Noamany, H., Chang, C. J., Brown, A. R., Chen, X., Leible, D., et al. (2019). A cortical-brainstem circuit predicts and governs compulsive alcohol drinking. Science 366, 1008–1012. doi: 10.1126/science.aay1186

PubMed Abstract | CrossRef Full Text | Google Scholar

Silberman, Y., Matthews, R. T., and Winder, D. G. (2013). A corticotropin releasing factor pathway for ethanol regulation of the ventral tegmental area in the bed nucleus of the stria terminalis. J. Neurosci. 33, 950–960. doi: 10.1523/JNEUROSCI.2949-12.2013

PubMed Abstract | CrossRef Full Text | Google Scholar

Simon, N. M., Hoeppner, S. S., Lubin, R. E., Robinaugh, D. J., Malgaroli, M., Norman, S. B., et al. (2020). Understanding the impact of complicated grief on combat related posttraumatic stress disorder, guilt, suicide and functional impairment in a clinical trial of post-9/11 service members and veterans. Depress. Anxiety 37, 63–72. doi: 10.1002/da.22911

PubMed Abstract | CrossRef Full Text | Google Scholar

Skolnick, P. (2018). The opioid epidemic: crisis and solutions. Annu. Rev. Pharmacol. Toxicol. 58, 143–159. doi: 10.1146/annurev-pharmtox-010617-052534

PubMed Abstract | CrossRef Full Text | Google Scholar

Sohn, J., Hioki, H., Okamoto, S., and Kaneko, T. (2014). Preprodynorphin-expressing neurons constitute a large subgroup of somatostatin-expressing GABAergic interneurons in the mouse neocortex. J. Comp. Neurol. 522, 1506–1526. doi: 10.1002/cne.23477

PubMed Abstract | CrossRef Full Text | Google Scholar

Sommer, W. H., Lidström, J., Sun, H., Passer, D., Eskay, R., Parker, S. C. J., et al. (2010). Human NPY promoter variation rs16147:T >C as a moderator of prefrontal NPY gene expression and negative affect. Hum. Mutat. 31, E1594–E1608. doi: 10.1002/humu.21299

PubMed Abstract | CrossRef Full Text | Google Scholar

Starbäck, P., Wraith, A., Eriksson, H., and Larhammar, D. (2000). Neuropeptide Y receptor gene y6: multiple deaths or resurrections? Biochem. Biophys. Res. Commun. 277, 264–269. doi: 10.1006/bbrc.2000.3656

PubMed Abstract | CrossRef Full Text | Google Scholar

Stuber, G. D., Sparta, D. R., Stamatakis, A. M., Van Leeuwen, W. A., Hardjoprajitno, J. E., Cho, S., et al. (2011). Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475, 377–382. doi: 10.1038/nature10194

PubMed Abstract | CrossRef Full Text | Google Scholar

Svingos, A. L., and Colago, E. E. O. (2002). κ-opioid and NMDA glutamate receptors are differentially targeted within rat medial prefrontal cortex. Brain Res. 946, 262–271. doi: 10.1016/s0006-8993(02)02894-9

CrossRef Full Text | Google Scholar

Swanson, L. W., Sawchenko, P. E., Rivier, J., and Vale, W. W. (1983). Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology 36, 156–186. doi: 10.1159/000123454

PubMed Abstract | CrossRef Full Text | Google Scholar

Taki, K., Kaneko, T., and Mizuno, N. (2000). A group of cortical interneurons expressing μ-opioid receptor-like immunoreactivity: a double immunofluorescence study in the rat cerebral cortex. Neuroscience 98, 221–231. doi: 10.1016/s0306-4522(00)00124-x

PubMed Abstract | CrossRef Full Text | Google Scholar

Taqi, M. M., Bazov, I., Watanabe, H., Sheedy, D., Harper, C., Alkass, K., et al. (2011). Prodynorphin CpG-SNPs associated with alcohol dependence: elevated methylation in the brain of human alcoholics. Addict. Biol. 16, 499–509. doi: 10.1111/j.1369-1600.2011.00323.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Tatemoto, K., Carlquist, M., and Mutt, V. (1982). Neuropeptide Y—a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296, 659–660. doi: 10.1038/296659a0

PubMed Abstract | CrossRef Full Text | Google Scholar

Teffer, K., and Semendeferi, K. (2012). Human prefrontal cortex: evolution, development, and pathology. Prog. Brain Res. 195, 191–218. doi: 10.1016/B978-0-444-53860-4.00009-X

PubMed Abstract | CrossRef Full Text | Google Scholar

Tejeda, H. A., Hanks, A. N., Scott, L., Mejias-Aponte, C., Hughes, Z. A., and O’Donnell, P. (2015). Prefrontal cortical kappa opioid receptors attenuate responses to amygdala inputs. Neuropsychopharmacology 40, 2856–2864. doi: 10.1038/npp.2015.138

PubMed Abstract | CrossRef Full Text | Google Scholar

Thal, L. J., Laing, K., Horowitz, S. G., and Makman, M. H. (1986). Dopamine stimulates rat cortical somatostatin release. Brain Res. 372, 205–209. doi: 10.1016/0006-8993(86)91126-1

PubMed Abstract | CrossRef Full Text | Google Scholar

Thiele, T. E., Marsh, D. J., Marie, L. S., Bernstein, I. L., and Palmiter, R. D. (1998). Ethanol consumption and resistance are inversely related to neuropeptide Y levels. Nature 396, 366–369. doi: 10.1038/24614

PubMed Abstract | CrossRef Full Text | Google Scholar

Thiele, T. E., Miura, G. I., Marsh, D. J., Bernstein, I. L., and Palmiter, R. D. (2000). Neurobiological responses to ethanol in mutant mice lacking neuropeptide Y or the Y5 receptor. Pharmacol. Biochem. Behav. 67, 683–691. doi: 10.1016/s0091-3057(00)00413-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Thierry, A. M., Gioanni, Y., Dégénétais, E., and Glowinski, J. (2000). Hippocampo-prefrontal cortex pathway: anatomical and electrophysiological characteristics. Hippocampus 10, 411–419. doi: 10.1002/1098-1063(2000)10:4<411::aid-hipo7>3.0.co;2-a

PubMed Abstract | CrossRef Full Text | Google Scholar

Thorsell, A. (2008). Central neuropeptide Y in anxiety- and stress-related behavior and in ethanol intake. Ann. N Y Acad. Sci. 1148, 136–140. doi: 10.1196/annals.1410.083

PubMed Abstract | CrossRef Full Text | Google Scholar

Tran, L., Schulkin, J., and Greenwood-Van Meerveld, B. (2014). Importance of CRF receptor-mediated mechanisms of the bed nucleus of the stria terminalis in the processing of anxiety and pain. Neuropsychopharmacology 39, 2633–2645. doi: 10.1038/npp.2014.117

PubMed Abstract | CrossRef Full Text | Google Scholar

Tripp, A., Kota, R. S., Lewis, D. A., and Sibille, E. (2011). Reduced somatostatin in subgenual anterior cingulate cortex in major depression. Neurobiol. Dis. 42, 116–124. doi: 10.1016/j.nbd.2011.01.014

PubMed Abstract | CrossRef Full Text | Google Scholar

Tsubomoto, M., Kawabata, R., Zhu, X., Minabe, Y., Chen, K., Lewis, D. A., et al. (2019). Expression of transcripts selective for gaba neuron subpopulations across the cortical visuospatial working memory network in the healthy state and schizophrenia. Cereb. Cortex 29, 3540–3550. doi: 10.1093/cercor/bhy227

PubMed Abstract | CrossRef Full Text | Google Scholar

Turnbull, A. V., and Rivier, C. (1997). Corticotropin-releasing factor (CRF) and endocrine responses to stress: CRF receptors, binding, protein and related peptides. Proc. Soc. Exp. Biol. Med. 215, 1–10. doi: 10.3181/00379727-215-44108

PubMed Abstract | CrossRef Full Text | Google Scholar

Urban-Ciecko, J., and Barth, A. L. (2016). Somatostatin-expressing neurons in cortical networks. Nat. Rev. Neurosci. 17, 401–409. doi: 10.1038/nrn.2016.53

PubMed Abstract | CrossRef Full Text | Google Scholar

Uribe-Mariño, A., Gassen, N. C., Wiesbeck, M. F., Balsevich, G., Santarelli, S., Solfrank, B., et al. (2016). Prefrontal cortex corticotropin-releasing factor receptor 1 conveys acute stress-induced executive dysfunction. Biol. Psychiatry 80, 743–753. doi: 10.1016/j.biopsych.2016.03.2106

PubMed Abstract | CrossRef Full Text | Google Scholar

Vale, W., Spiess, J., Rivier, C., and Rivier, J. (1981). Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 213, 1394–1397. doi: 10.1126/science.6267699

PubMed Abstract | CrossRef Full Text | Google Scholar

Van De Werd, H. J. J. M., Rajkowska, G., Evers, P., and Uylings, H. B. M. (2010). Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Struct. Funct. 214, 339–353. doi: 10.1007/s00429-010-0247-z

PubMed Abstract | CrossRef Full Text | Google Scholar

van den Pol, A. N. (2012). Neuropeptide transmission in brain circuits. Neuron 76, 98–115. doi: 10.1016/j.neuron.2012.09.014

PubMed Abstract | CrossRef Full Text | Google Scholar

Van Eden, C. G., and Buijs, R. M. (2000). Functional neuroanatomy of the prefrontal cortex: autonomic interactions. Prog. Brain Res. 126, 49–62. doi: 10.1016/s0079-6123(00)26006-8

PubMed Abstract | CrossRef Full Text | Google Scholar

Van Pett, K., Viau, V., Bittencourt, J. C., Chan, R. K. W., Li, H. Y., Arias, C., et al. (2000). Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J. Comp. Neurol. 428, 191–212. doi: 10.1002/1096-9861(20001211)428:2<191::aid-cne1>3.0.co;2-u

PubMed Abstract | CrossRef Full Text | Google Scholar

Vaughan, J., Donaldson, C., Bittencourt, J., Perrin, M. H., Lewis, K., Sutton, S., et al. (1995). Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 378, 287–292. doi: 10.1038/378287a0

PubMed Abstract | CrossRef Full Text | Google Scholar

Vollmer, L. L., Schmeltzer, S., Schurdak, J., Ahlbrand, R., Rush, J., Dolgas, C. M., et al. (2016). Neuropeptide Y impairs retrieval of extinguished fear and modulates excitability of neurons in the infralimbic prefrontal cortex. J. Neurosci. 36, 1306–1315. doi: 10.1523/JNEUROSCI.4955-13.2016

PubMed Abstract | CrossRef Full Text | Google Scholar

Wall, P. M., and Messier, C. (2000). U-69,593 microinjection in the infralimbic cortex reduces anxiety and enhances spontaneous alternation memory in mice. Brain Res. 856, 259–280. doi: 10.1016/S0006-8993(99)01990-3

PubMed Abstract | CrossRef Full Text | Google Scholar

Wahlestedt, C., Ekman, R., and Widerlöv, E. (1989). Neuropeptide Y (NPY) and the central nervous system: distribution effects and possible relationship to neurological and psychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 13, 31–54. doi: 10.1016/0278-5846(89)90003-1

PubMed Abstract | CrossRef Full Text | Google Scholar

Wahlestedt, C., Karoum, F., Jaskiw, G., Wyatt, R. J., Larhammar, D., Ekman, R., et al. (1991). Cocaine-induced reduction of brain neuropeptide Y synthesis dependent on medial prefrontal cortex. Proc. Natl. Acad. Sci. U S A 88, 2078–2082. doi: 10.1073/pnas.88.6.2078

PubMed Abstract | CrossRef Full Text | Google Scholar

Wang, H. L., Bogen, C., Reisine, T., and Dichter, M. (1989). Somatostatin-14 and somatostatin-28 induce opposite effects on potassium currents in rat neocortical neurons. Proc. Natl. Acad. Sci. U S A 86, 9616–9620. doi: 10.1073/pnas.86.23.9616

PubMed Abstract | CrossRef Full Text | Google Scholar

Wang, S. C., Lin, C. C., Tzeng, N. S., Tung, C. S., and Liu, Y. P. (2019). Effects of oxytocin on prosocial behavior and the associated profiles of oxytocinergic and corticotropin-releasing hormone receptors in a rodent model of posttraumatic stress disorder. J. Biomed. Sci. 26:26. doi: 10.1186/s12929-019-0514-0

PubMed Abstract | CrossRef Full Text | Google Scholar

Wang, W., Xu, T., Chen, X., Dong, K., Du, C., Sun, J., et al. (2019). NPY receptor 2 mediates NPY antidepressant effect in the mPFC of LPS rat by suppressing NLRP3 signaling pathway. Mediators Inflamm. 2019:7898095. doi: 10.1155/2019/7898095

PubMed Abstract | CrossRef Full Text | Google Scholar

Wee, S., and Koob, G. F. (2010). The role of the dynorphin-κ opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology 210, 121–135. doi: 10.1007/s00213-010-1825-8

PubMed Abstract | CrossRef Full Text | Google Scholar

Wevers, A., Schmidt, P., Cserpan, E., Cserpan, I., Maderspach, K., Staak, M., et al. (1995). Cellular distribution of the mRNA for the κ-opioid receptor in the human neocortex: a non-isotopic in situ hybridization study. Neurosci. Lett. 195, 125–128. doi: 10.1016/0304-3940(95)11797-z

PubMed Abstract | CrossRef Full Text | Google Scholar

Widdowson, P. S., Ordway, G. A., and Halaris, A. E. (1992). Reduced neuropeptide Y concentrations in suicide brain. J. Neurochem. 59, 73–80. doi: 10.1111/j.1471-4159.1992.tb08877.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Wiersielis, K. R., Wicks, B., Simko, H., Cohen, S. R., Khantsis, S., Baksh, N., et al. (2016). Sex differences in corticotropin releasing factor-evoked behavior and activated networks. Psychoneuroendocrinology 73, 204–216. doi: 10.1016/j.psyneuen.2016.07.007

PubMed Abstract | CrossRef Full Text | Google Scholar

Wille-Bille, A., Miranda-Morales, R. S., Pucci, M., Bellia, F., D’Addario, C., and Pautassi, R. M. (2018). Prenatal ethanol induces an anxiety phenotype and alters expression of dynorphin and nociceptin/orphanin FQ genes. Prog. Neuropsychopharmacol. Biol. Psychiatry 85, 77–88. doi: 10.1016/j.pnpbp.2018.04.005

PubMed Abstract | CrossRef Full Text | Google Scholar

Witkowski, G., and Szulczyk, P. (2006). Opioid μ receptor activation inhibits sodium currents in prefrontal cortical neurons via a protein kinase A- and C-dependent mechanism. Brain Res. 1094, 92–106. doi: 10.1016/j.brainres.2006.03.119

PubMed Abstract | CrossRef Full Text | Google Scholar

Wu, G., Feder, A., Wegener, G., Bailey, C., Saxena, S., Charney, D., et al. (2011). Central functions of neuropeptide y in mood and anxiety disorders. Expert Opin. Ther. Targets 15, 1317–1331. doi: 10.1517/14728222.2011.628314

PubMed Abstract | CrossRef Full Text | Google Scholar

Yamashita, A., Hayashi, M., Shimizu, K., and Oshima, K. (1989). Ontogeny of somatostatin in cerebral cortex of macaque monkey: an immunohistochemical study. Dev. Brain Res. 45, 103–111. doi: 10.1016/0165-3806(89)90012-6

PubMed Abstract | CrossRef Full Text | Google Scholar

Yarur, H. E., Vega-Quiroga, I., González, M. P., Noches, V., Thomases, D. R., Andrés, M. E., et al. (2020). Inhibitory control of basolateral amygdalar transmission to the prefrontal cortex by local corticotrophin type 2 receptor. Int. J. Neuropsychopharmacol. 23, 108–116. doi: 10.1093/ijnp/pyz065

PubMed Abstract | CrossRef Full Text | Google Scholar

Yu, G., Yan, H., and Gong, Z.-H. (2012). Differential effects of acute and repeated morphine treatment on κ-opioid receptor mRNA levels in mesocorticolimbic system. Pharmacol. Rep. 64, 445–448. doi: 10.1016/s1734-1140(12)70786-7

PubMed Abstract | CrossRef Full Text | Google Scholar

Yu, G., Yan, H., and Gong, Z. H. (2014). Effects of acute and repeated morphine treatment on κ-opioid receptor protein levels in mesocorticolimbic system. J. Recept. Signal Transduct. Res. 34, 44–47. doi: 10.3109/10799893.2013.856919

PubMed Abstract | CrossRef Full Text | Google Scholar

Zamir, N., Palkovits, M., and Brownstein, M. J. (1984a). Distribution of immunoreactive dynorphin A1–8 in discrete nuclei of the rat brain: comparison with dynorphin A. Brain Res. 307, 61–68. doi: 10.1016/0006-8993(84)90460-8

PubMed Abstract | CrossRef Full Text | Google Scholar

Zamir, N., Palkovits, M., Weber, E., and Brownstein, M. J. (1984b). Distribution of immunoreactive dynorphin B in discrete areas of the rat brain and spinal cord. Brain Res. 300, 121–127. doi: 10.1016/0006-8993(84)91346-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Zieba, B., Grzegorzewska, M., Brański, P., Domin, H., Wierońska, J. M., Hess, G., et al. (2008). The behavioural and electrophysiological effects of CRF in rat frontal cortex. Neuropeptides 42, 513–523. doi: 10.1016/j.npep.2008.05.004

PubMed Abstract | CrossRef Full Text | Google Scholar

Zorrilla, E. P., Logrip, M. L., and Koob, G. F. (2014). Corticotropin releasing factor: a key role in the neurobiology of addiction. Front. Neuroendocrinol. 35, 234–244. doi: 10.1016/j.yfrne.2014.01.001

PubMed Abstract | CrossRef Full Text | Google Scholar

Zukowska-Grojec, Z. (1995). Neuropeptide Y. A novel sympathetic stress hormone and more. Ann. N Y Acad. Sci. 771, 219–233. doi: 10.1111/j.1749-6632.1995.tb44683.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Premium WordPress Themes Download
Download Best WordPress Themes Free Download
Download WordPress Themes Free
Download Nulled WordPress Themes
ZG93bmxvYWQgbHluZGEgY291cnNlIGZyZWU=
download huawei firmware
Download Nulled WordPress Themes
udemy free download
menuarrow-right-circle